
UIC John Marshall Journal of Information Technology & Privacy UIC John Marshall Journal of Information Technology & Privacy

Law Law

Volume 25
Issue 3 Journal of Computer & Information Law
- Summer 2008

Article 2

Summer 2008

Deadly Combinations: A Framework for Analyzing the GPL’s Viral Deadly Combinations: A Framework for Analyzing the GPL’s Viral

Effect, 25 J. Marshall J. Computer & Info. L. 487 (2008) Effect, 25 J. Marshall J. Computer & Info. L. 487 (2008)

Ron Phillips

Follow this and additional works at: https://repository.law.uic.edu/jitpl

 Part of the Computer Law Commons, Internet Law Commons, and the Science and Technology Law

Commons

Recommended Citation Recommended Citation
Ron Phillips, Deadly Combinations: A Framework for Analyzing the GPL’s Viral Effect, 25 J. Marshall J.
Computer & Info. L. 487 (2008)

https://repository.law.uic.edu/jitpl/vol25/iss3/2

This Article is brought to you for free and open access by UIC Law Open Access Repository. It has been accepted
for inclusion in UIC John Marshall Journal of Information Technology & Privacy Law by an authorized administrator
of UIC Law Open Access Repository. For more information, please contact repository@jmls.edu.

https://repository.law.uic.edu/jitpl
https://repository.law.uic.edu/jitpl
https://repository.law.uic.edu/jitpl/vol25
https://repository.law.uic.edu/jitpl/vol25/iss3
https://repository.law.uic.edu/jitpl/vol25/iss3
https://repository.law.uic.edu/jitpl/vol25/iss3/2
https://repository.law.uic.edu/jitpl?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol25%2Fiss3%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol25%2Fiss3%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/892?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol25%2Fiss3%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/875?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol25%2Fiss3%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/875?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol25%2Fiss3%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@jmls.edu

DEADLY COMBINATIONS:
A FRAMEWORK FOR ANALYZING

THE GPL'S VIRAL EFFECT

RON PHILLIPSt

I. INTRODUCTION

Free and Open Source Software ("FOSS") is a popular movement
that at first blush seems to be a win-win for everyone. Community
source I projects, such as these, offer an attractive alternative to buying
licenses for proprietary software. The software is free to use and can be
downloaded from the Internet. Second - and in stark contrast to most
proprietary software - the source code for the software is freely availa-
ble. This availability allows licensees to modify and adapt the software
for a particular need. For the unwary software development organiza-
tion, however, the infectious nature of community source licenses can
make "free" software a costly option.

This paper will argue that adaptations combining community source
licensed software with an organization's own intellectual property can
trigger viral terms of the community source licenses in unexpected ways.
Those terms require public disclosure of the software's source code,
which in turn can erode or completely destroy the commercial value of
intellectual property. This paper will propose a model framework for an-
alyzing software combinations to determine whether the viral terms are
triggered, and illustrate that analysis against various technical combina-
tions of community-sourced and proprietary software.

This paper begins with a brief primer on community source and its
licensing models. It then introduces the GNU General Public License as
a prototypical licensing model. Next, there is a discussion about the con-

t Vice President and General Counsel, Serlio Software Development Corporation;
J.D. Marquette University Law School; B.S. University of Washington. Special thanks to
my colleagues at Serlio for their insights, and to Lynn, Tony, Danielle and Amanda for
their patience and support.

1. The advocates of FOSS projects draw strong distinctions between the meanings of
"free software" and "open source" software. This paper uses the term "community source"
to refer to FOSS projects as a term that is neutral with respect to the motivations of the
individuals and organizations behind these projects.

488 JOURNAL OF COMPUTER & INFORMATION LAW

cept of "copyleft" and how it applies when software developers combine
community source software with their own new works. Additionally, two
"bright line" examples of combinations of software illustrate the legal
boundaries of software combinations and the legal uncertainty of the
combinations within that spectrum. Finally, this paper introduces a
framework for technical and legal analysis of software combinations that
is designed to mitigate some of the uncertainty stemming from ambigu-
ity in the GNU General Public License. This discussion reviews different
technical approaches of combining community source and other software
and suggests likely legal conclusions. 2

II. BACKGROUND

A. TECHNICAL ESSENTIALS

A modest amount of technical background on the internal workings
of software is necessary to understand some of the inherent subtleties of
software and copyright law. Without understanding, it is not always
clear whether and how a particular piece of software may infringe on
copyrights in other software and who the ultimate infringer could be.

The process of building software involves writing instructions in a
structured form that can be readily understood by a software developer
and then transforming those instructions into a sequence of numbers.
Computer processors are only capable of understanding data and in-
structions as series of numbers. However, humans are much more effi-
cient when dealing with higher level concepts. Programming languages
provide a textual grammar that the software developer can use to ex-
press instructions for the computer ("source code"), which are translated
or compiled into the numeric values, the computer can understand,
called object code. This is accomplished using a special compiler pro-
gram. Before the computer can execute those instructions, the object
code must be linked with a separate linker program. The linker program
combines the object code into a file, packaging all of the instructions
along with additional system code in a format that the computer can
load, parse and run. See Appendix A, Figure 1.

Computer programs - with the exception of the most trivial ones
are commonly comprised of thousands of lines of source code stored in
many separate files. The process of building an executable program in-
volves compiling the source code of many files, into corresponding object
code files. The linker then puts all the parts together. See Appendix A,
Figure 2.

2. Please note: it is explicitly not the author's intention to judge community source
projects as inherently bad. The author has extensive experience and deep appreciation for
community source projects. It is the ignorance of the ramifications of software licenses that
is inherently bad.

[Vol. XXV

DEADLY COMBINATIONS

Parts of software programs that are useful enough to be reused, are
often compiled into a library. For example, rather than reinventing algo-
rithms to draw charts, soft-xare developers might get an existing library
that already contains those routines and use it in their programs. A
static library is a special kind of compiled file that contains the reusable
routines stored as object code. The static library file can be read by the
linker program, which then copies the parts of the library that are
needed along with the developer's object files. It then packages all of
those parts into the executable file. See Appendix A, Figure 3.

A dynamically linked or "shared" library serves the same purpose as
a static library, but the contents of the library are not copied into the
program's executable file by the linker. Instead, the linker generates in-
structions in the executable file, directing it to load the library into mem-
ory when the program runs. See Appendix A, Figure 4. Note that the
executable file does not include the object code for the routines from the
dynamically linked library. In order for the program to run, the dynami-
cally linked library must be installed on that computer.

B. COMMUNITY SOURCE - A BRIEF PRIMER

Free Software and Open Source software, which is referred to collec-
tively as "community source" in this article, is software that can be char-
acterized as (a) having been developed by a loosely-grouped team of
volunteer software developers, (b) that is distributed without charge, and
(c) makes the source code freely available. 3 The economics of a volunteer
workforce are plain. As a product of volunteer contributions,4 the
software can be distributed freely without the need to recoup research
and development costs. Further, community source advocates claim that
an open development process makes the source code available for anyone
to study, review, and critique results in software that is substantially
higher quality than that of closed, proprietary software. 5

The availability of the source code, however, has more than aca-
demic interest. Most commercial software is sold as a "black box" and
the source code carefully guarded as a trade secret. In contrast, the
source code for community source software is freely available. In effect,

3. See generally Marcus Mahler, Open Source Software: The Success of an Alternative
Intellectual Property Incentive Paradigm, 10 FORDHAM INTELL. PROP. MEDIA & ENT. L.J.
619, 638-40 (2000).

4. See Karim Lakhani & Robert G. Wolf, PERSPECTIVES ON FREE AND OPEN SOURCE

SOFTWARE 3, 9 (Joseph Feller ed. 2005). The reader should not infer, however, that the
contributors are never compensated. Several commercial software development companies
pay employees to develop software contributed to community source projects, including
Microsoft, IBM, and Sun. Many other companies unwittingly pay employees for contribu-
tions to community source projects developed during working hours.

5. Open Source Initiative, http://opensource.org (last visited Oct. 23, 2007).

20081

490 JOURNAL OF COMPUTER & INFORMATION LAW

the blueprints for building and changing the software are free for any-
one. Having source code available to modify for a particular business or
market need can substantially decrease production costs and accelerate
the time to market. Industry leaders, including Hewlett Packard, IBM,
and Nokia have implemented modified versions of community source in a
broad range of products including routers, "smartphones," and PDA's.6

Depending on the license for community source software, commer-
cial use may come with strings attached. There are countless licenses
used by community source projects, but three license models
predominate: BSD, GNU General Public License, and Open Source Initi-
ative.7 The BSD license is an "attribution only" license that places few
limitations on derivative works.8 The license anticipates and encourages
commercial exploitation of the software 9 and requires little more than
acknowledgement in the copyright for the derived work.10 The GNU and
Open Source Initiative licenses are drafted with the expectation of ex-
tending their terms to other software that is combined with software al-
ready under that license." The GNU General Public License will be the
main focus of this article, as it is more frequently used than others
licenses. 12

The GNU General Public License ("GPL") currently covers about
sixty to seventy percent of community source software. This includes the
Linux operating system and a vast body of software that runs on
Linux. 13 Drafted by the Free Software Foundation ("FSF") and now in
its third revision, the GPL is perhaps the most exacting community
source license. Like the BSD model, the GPL favors free and open distri-
bution of software with its source code. 14 The founders of the Free
Software Foundation, however, assert that software source code should
be freely available as a matter of right. 15 The GPL permits copying,

6. Richard Koman, First GPL Lawsuit Settling Out of Court, Sci-TECH TODAY, Sept.
24, 2007, http://www.sci-tech-today.com/story.xhtml?story-id=11200DQNRSSG (last vis-
ited Aug. 1, 2008).

7. Mahler, supra note 4.
8. Greg R. Vetter, Infectious Open Source Software: Spreading Incentives or Promot-

ing Resistance, 36 RUTGERS L.J. 53, 74 (2004).
9. Bruce Montague, Why You Should Use a BSD Style License for Your Open Source

Project, 6 (2006), ftp://ftp.freebsd.org/pub/FreeBSD/doc/enUS.IS08859-1/articles/bsdl-gpl/
article.pdf zip (last visited Aug. 1, 2008).

10. FreeBSD Copyright, http://www.freebsd.org/copyright/freebsd-license.html (last
visited Sept. 23, 2007).

11. Vetter, supra note 9, at 65.
12. Liz Laffan, Vision Mobile, GPLv2 vs GPLv3, http://linuxdevices.com/files/misc/

GPLv2 vs GPLv3.pdf (last visited Sept. 23, 2007).
13. Id.
14. GNU General Public License, http://www.gnu.org/licenses/old-licenses/gpl-l.0.txt

(last visited Aug. 1, 2008).
15. Id.

[Vol. XXV

DEADLY COMBINATIONS

changing, and redistributing the licensed software. However, the GPL in
turn imposes significant restrictions and requirements for distribution,
such as imposing limits on what an author can charge for the software,
requiring publication of the source code for the modified software, and
prohibiting use of GPL software for certain applications. 16 The FSF ag-
gressively investigates reported violations of the GPL and funds its Free
Software Licensing and Compliance Lab to enforce the terms of the
GPL.

17

The GPL drafters assert it is a license, not a contract, and base its
enforceability on copyright law.' 8 The license is essentially a promise
not to sue for conduct that would, absent the license, constitute a viola-
tion of the rights of the copyright owner.19 This is most particularly, the
right to reproduce and the right to make derivative works. 20 The GPL
grants a license to distribute and create derivative works if, and only if,
the licensee complies with the specific terms in the license. 21 Without
such compliance, there is no license for use, and the copyright owner can
sue for any use that infringes on that copyright. 22 Compliance with the
licensing terms for derivative works seems to be one that generates par-
ticular controversy.

The GPL includes a "copyleft" term that requires derivative works to
be licensed under the same terms as the original GPL work.23 The
copyleft clause is the quid pro quo for the privilege of being granted li-
cense to the software. It permits the licensee to make new works based
on the GPL software and to distribute those new works (even copies of
the original software itself), but compels the licensee to either distribute
those combined works under the same terms of the original software's
license agreement or not distribute at all.24 When the copyleft terms are
triggered, the new combination has to be distributed with the source
code freely available.25

16. Id,; see also Laffan, supra note 13.

17. FSF Free Software Licensing and Compliance Lab, http://www.fsf.org/licensing
(last visited Aug. 1, 2008).

18. GNU General Public License Version 2, http://www.gnu.org/licenses/old-licenses/
gpl-2.0.txt (last visited Aug. 1, 2008).

19. Id.

20. Vetter, supra note 9, at 69.

21. GNU General Public License, supra note 19.

22. Id.

23. Id.
24. Id.

25. Id.

2008]

492 JOURNAL OF COMPUTER & INFORMATION LAW

III. DERIVATIVE WORKS - PROCEED AT YOUR OWN RISK

The text of the GPL is not very helpful in sorting out what combina-
tions will trigger copyleft and require the entire combination to be li-
censed under the terms of the GPL. 26 An organization that wants to
capitalize on intellectual property that adds value to GPL-licensed
software faces substantial risks. 27 Unless that organization accepts the
risk of a lawsuit or being required to open their source code to the public,
they need to understand what they are doing both technically and le-
gally.28 Software developers who want to create and sell proprietary
software for use with GPL-licensed software may find their software in-
fected by the copyleft terms of the GPL. The terms and effect of copyleft
are illustrated by Version 2 of the GPL, under which most community
source software is licensed. 29 GPL Version 2 grants a conditional license
to create derivative works:

You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute
such modifications or work . . . provided that you also . .. cause any
work that you distribute or publish, that in whole or in part contains or
is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.30

The plain language of this clause permits the licensee to copy the work
in its entirety, change it, or create new software based on the GPL li-
censed work. However, if that work is distributed to a third party, the
licensee must license that work as a whole under the same GPL terms.
This includes terms that require releasing source code for changes and
prevent charging for the software. Reading the clause literally, it seems
to infect any proprietary software combined with copylefted software,
such as putting GPL software on the same disk with proprietary
software. In contrast, the GPL provides that, "mere aggregation of an-
other work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License." 3 1 Here,
the license specifically stipulates that mere aggregation will not impose
the terms of the GPL on unrelated proprietary software that is, for exam-

26. See generally Lori E. Lesser, Open Source Software 2006: Critical Issues in Today's
Corporate Environment, 885 PRACTICING L. INST. 9 (2006).

27. Id.

28. Id.

29. Few Takers for Latest Version of GPL, VNUNET.com, http://www.vnunet.com/
itweek/analysis/2200759/few-takers-latest-version-gpl (last visited Aug. 1, 2008).

30. GNU General Public License, supra note 19.

31. Id.

[Vol. XXV

DEADLY COMBINATIONS

ple, distributed on the same DVD as GPL-licensed software. 32 On the
other hand, it is axiomatic that changing the GPL program's source code
creates a derivative work.33 Distributing that derivative work makes it
subject to the terms of the GPL. 34 These two scenarios are the only
bright line rules for copyleft in the GPL. 35 Between the end-points of
mere aggregation and direct source modification lays a broad spectrum
of possible combinations that the terms of the GPL may or may not
reach.36

There is little certainty for software developers whose combinations
of GPL and proprietary software fall within that spectrum because it is
not easy to determine when combinations impose the copyleft terms of
the GPL on the proprietary software. 37 The terms of the GPL provide a
safe harbor clause for wholly independent works that are not distributed
with the GPL licensed software:

If identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sec-
tions when you distribute them as separate works. But when you dis-
tribute the same sections as part of a whole which is a work based on
the Program, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it. 38

The safe harbor clause turns on whether (a) the other software is an
independent and separate work, and (b) that independent and separate
work is not distributed as part of a whole based on the GPL-licensed
software. The terms "independent and separate work" and "whole" are
not defined in the GPL, but it seems that a "whole" means a combination
where the parts are somehow more closely related than a "mere aggrega-
tion." The FSF comments:

What constitutes combining two parts into one program? This is a legal
question, which ultimately judges will decide. We believe that a proper
criterion depends both on the mechanism of communication (exec,
pipes, rpc [sic], function calls within a shared address space, etc.) and
the semantics of the communication (what kinds of information are

32. Id. This provision is more important than it would seem at first blush because
merely installing software onto a hard drive creates this sort of aggregate combination.

33. See, e.g., Computer Assoc. Int'l v. Quest Software, Inc., 333 F. Supp. 2d 688, 699
(N.D. Ill. 2004).

34. GNU General Public License, supra note 19.

35. Id.

36. Vetter, supra note 9.

37. Lesser, supra note 27, at 24.
38. GNU General Public License, supra note 19.

2008]

494 JOURNAL OF COMPUTER & INFORMATION LAW

interchanged). 39

Whether the FSF could convince a court to enforce copyleft on these
kinds of combinations remains to be seen. 40 The FSF's license enforce-
ment group has charged many organizations with violating the GPL, but
every case in the United States has been quietly settled outside of
court. 41 There is literally no legal precedent in the United States con-
cerning enforcement of the GPL at the time of this writing. 42 Without
legal precedent establishing which specific technical software combina-
tions impose copyleft, practitioners must predict their legal standing by
determining whether the proprietary software within a combination, in-
fringes on the distribution rights of the GPL software licensor. They also
must consider whether the proprietary software constitutes a derivative
work.43

IV. DISTRIBUTION AND DERIVATION - VIRAL CATALYSTS

The reach of the copyleft terms of the GPL is fundamentally limited
to the extent to which a combination of GPL-licensed software and an-
other work infringes on the GPL licensor's rights to distribution and to
derivative works. 44 Copyright law specifically identifies distribution and
derivative works in the bundle of rights afforded to the owner of a copy-
right.45 Without that backing authority of 17 U.S.C. Section 106, the
FSF would have no enforceable rights under which it could limit the abil-
ity of third parties to combine GPL-licensed software with other
software. 46 If the combination neither infringes on the distribution right
nor is a derivative work, there is no legal basis by which the GPL terms
could be imposed on the non-GPL software.4 7 The two scenarios de-

39. GNU Operating System, Frequently Asked Questions About the GNU, http://www.
gnu.org/licenses/gpl-faq.html (last visited Aug. 1, 2008).

40. Brian W. Carver, Share and Share Alike: Understanding and Enforcing Open
Source and Free Software Licenses, 20 BERKELEY TECH. L.J. 443, 468 (2005).

41. See First U.S. GPL Lawsuit Filed, LINUX WATCH, (Sept. 20, 2007, http://www.linux-
watch.com/news/NS3973290690.html (last visited Aug. 1, 2008); see also Monsoon Mul-
timedia, Press Release, Monsoon Multimedia to Comply with GNU General Public License
(Sept. 21, 2007), available at http://www.myhava.com/press releases-monsoon-open-
source.html.

42. Id.
43. Lesser, supra note 27, at 25.
44. Lothar Determann, Dangerous Liaisons -Software Combinations as Derivative

Works? 21 BERKELEY TECH. L.J. 1421, 1465 (2006).
45. 17 U.S.C. § 106 (2006).
46. 42 U.S.C. § 106; see Mathias Strasser, A New Paradigm in Intellectual Property

Law? The Case Against Open Sources, 2001 STAN. TECH. L. REV. 4, 32 (2001). Since the
FSF asserts that the GPL is not a contract, I do not consider any contractual rights that
might exist here.

47. See GNU General Public License, supra note 19 (stating license of right under cop-
yright law are the only means by which GPL software can be used).

[Vol. XXV

DEADLY COMBINATIONS

scribed above, as endpoints of a range of possible combinations, illustrate
this point. Where the combination is a mere aggregation, the unrelated
proprietary software does not infringe on the GPL licensor's right to de-
rivative works: the added software makes no actual or conceptual use of
the GPL-licensed work.48 Nonetheless, distributing the GPL software
without a license to do so would be actionable. 49 Where the combination
is created by modifying and recompiling the GPL source, the program is
a derivative work because it is one in which the GPL program has been
"recast, transformed or adapted"50 and could infringe on the licensor's
rights.

The copyleft terms of the GPL only come into effect when and if the
work derived from the GPL-licensed software is distributed. This stands
in contrast to United States' copyright law, which does not limit a copy-
right holder's rights to distributed derivative works. 51 A derivative work
made without permission infringes, whether published or not.5 2 The
drafters of the GPL, however, intended that distribution must be a condi-
tion precedent to enforcing copyleft:53

The GPL does not require you to release your modified version. You
are free to make modifications and use them privately, without ever re-
leasing them. This applies to organizations (including companies), too;
an organization can make a modified version and use it internally with-
out ever releasing it outside the organization. But if you release the mod-
ified version to the public in some way, the GPL requires you to make the
modified source code available to the program's users, under the GPL.54

The terms of the GPL grant a virtually unlimited license for non-
distributed derivative works, and the copyleft terms under the GPL do
not spring into force without distribution.55

V. ANALYZING COMBINATIONS OF GPL,
PROPRIETARY SOFTWARE

A framework for analyzing various software combinations may help
to determine the reach of copyleft. The text of the GPL circumscribes the
outer bounds of what is allowed and what is prohibited, but provides lit-
tle guidance for combinations within the spectrum of possible combina-
tions.56 Close analysis of potential combinations to expose the means by

48. Id.
49. Id.
50. 17 U.S.C. § 101 (2006).
51. 17 U.S.C. § 106(2) (2006).
52. 17 U.S.C. § 104(a) (2006).
53. GNU General Public License, supra note 19.
54. Free Software Foundation, supra note 41.
55. GNU General Public License, supra note 19.
56. Vetter, supra note 9, at 92.

20081

496 JOURNAL OF COMPUTER & INFORMATION LAW

which the combination is formed provides a factual basis for application
of copyright principles. A candidate framework for such analysis is in-
troduced here, and is demonstrated with analysis of commonly-occurring
technical combinations of software. The framework helps to identify sce-
narios that are likely to impose copyleft by categorizing patterns of
software combinations.

A. FRAMEWORK FOR ANALYSIS

Determining if a particular combination of software will trigger
copyleft terms requires a technical analysis of how those works are com-
bined. It also involves a legal analysis of that combination against the
terms of the GPL and copyright law. The specific nature of the combina-
tion is tested against the GPL to determine if that combination is explic-
itly permitted or prohibited. If not, then the combination is analyzed to
determine whether it constitutes a derivative work under copyright law
(in turn providing substance for enforcing the terms of the GPL).57 See
Appendix A, Figure 5.

The technical analysis is required to determine precisely how the
GPL-licensed software and the proprietary software are related and in-
teract. For example, copyleft terms are not implicated where the rela-
tionship between the GPL and proprietary software is simply having
been distributed together on the same disk.58 Where there is a more
intimate nexus between the two programs, however, more investigation
is required to determine if the combination creates a copy of all or part of
the GPL program permanently onto a disk, creates an in-memory copy,
or whether the two programs interoperate in some manner.59 This in-
vestigation establishes a factual basis upon which to develop a legal
analysis.

60

The purpose of the legal analysis is to determine whether the propri-
etary software constitutes a derivative work by incorporating protected
expression in some definite, concrete form.6 1 That incorporation may be
through literal or non-literal copying. 62 Based on an understanding of
the precise nature of the relationship between the GPL-licensed and pro-
prietary software, the analysis uncovers whether copying has occurred,
and whether that copying involved protected expression.

The framework is comprised of three primary steps. The first step,
safe harbor analysis, determines if the combination falls completely

57. Determann, supra note 45, at 1465.
58. GNU General Public License, supra note 19.
59. Free Software Foundation, supra note 41.
60. See, e.g., Vetter, supra note 9, at 112.
61. Micro Star v. FormGen, Inc., 154 F.3d 1107, 1111 (9th Cir. 1998).
62. Determann, supra note 45, at 1433.

[Vol. XXV

DEADLY COMBINATIONS

outside the reach of the GPL or is an explicitly permitted combination.
The next step, suspect combinations, identifies likely-infringing scena-
rios where the developer of the combination has created a derivative
work. The final step, zone of uncertainty, provides guidance for technical
and legal analysis of combinations where the question of whether copy-
ing has occurred may not be readily evident.

B. APPLICATION OF ANALYSIS - SAFE HARBOR ANALYSIS

The safe harbor analysis determines whether a software combina-
tion falls outside the reach of the GPL or is an explicitly permitted use
under the GPL that does not impose copyleft. First, if proprietary
software is in no way related to GPL-licensed software, it is axiomatic
that the GPL cannot be imposed upon it. Second, even if the software is
somehow combined with GPL software but is not distributed, the GPL
copyleft terms are not imposed. 63

The GPL provides a safe harbor clause permitting distribution of a
mere aggregation of proprietary and GPL licensed software without trig-
gering copyleft terms. 64 The GPL attempts to explain mere aggregation
as one where the proprietary software is "reasonably considered [an] in-
dependent and separate [work] ."65 This language suggests that where
the proprietary software and the GPL-licensed software are merely pack-
aged together on the same distribution medium, the copyleft terms are
not implicated. 66 If, however, the software is bundled somehow as a
whole, the terms of the GPL infect the proprietary software. 67

Consider this example: Client wants to distribute his proprietary tax
software with OpenAccolade, an Enterprise Resource Planning ("ERP")
package licensed under the GPL. He plans to distribute them both on a
single DVD. The two programs are otherwise unrelated and do not inter-
operate. Here, the client's packaging likely falls under the safe harbor
permitting distribution of combinations that are mere aggregations,
since there is no closer nexus. 68

C. APPLICATION OF ANALYSIS - SUSPECT SOFTWARE COMBINATIONS

The next step, the suspect combinations analysis, looks for specific
practices in software development that are likely to result in derivative
works because the practice involves copying of protected expression. If

63. See GNU General Public License, supra note 19.
64. Id.
65. Id.
66. David McGowan, Legal Implications of Open-Source Software, 2001 U. ILL. L. REV.

241, 255 (2001).
67. Id.
68. Id.

2008]

498 JOURNAL OF COMPUTER & INFORMATION LAW

the developer has somehow brought protected expression from the GPL
software into a new work, the result is a derivative work.69 Though cop-
ying may not be obvious or intentional, the resulting work will be in-
fected and subject to the copyleft terms 70

The most obvious case occurs when the developer copies GPL source
code into his own source. See Appendix A, Figure 6. Here, the developer
engages in literal copying of protected expression. Source code is pro-
tected under copyright as a literary work71 and literal copying infringes
on the copyright holder's right to derivative works.72

Linking object code compiled from a legitimately obtained GPL-li-
censed source file into the proprietary work is similarly infringing. Ob-
ject code is given the same copyright protection as source code and is
usually considered an analog to source code. 73 The act of compiling the
GPL-licensed source creates a non-literal copy by transforming it into
object code. See Appendix A, Figure 7. The act of copying alone is not
enough to trigger copyleft, because no derivative work has been distrib-
uted.74 Linking the object code into an executable file, however, creates
an additional copy of the object code into the executable file. If that exe-
cutable file is distributed, the copyleft terms spring into effect against
the whole program.75 Where the program is built by linking routines
from a GPL-licensed library, the result is the same. Linking the pro-
gram makes an in-memory copy of copyrighted object code from the li-
brary and copies it in the executable file. The resulting executable file
incorporates the copyrighted code and the copyleft terms are imposed on
the resulting program.76

Non-literal copying can occur when a developer translates GPL
software from one programming language to another. 77 The GPL explic-

69. 17 U.S.C. § 101 (2006).
70. Lesser, supra note 27, at 24.
71. Computer Associates v. Altai, 982 F.2d 693, 702 (2d Cir. 1992).
72. See, e.g., Computer Associates v. Quest Software, 333 F. Supp. 2d 688, 699 (N.D.

Ill. 2004).
73. Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1249 (3d Cir.

1983).
74. GNU General Public License, supra note 19 (requiring distribution of the original

source code, the clause in the GPL would be triggered if the developer merely distributed
the object code file generated from the GPL).

75. Id.
76. Id.; but see GNU Lesser General Public License (2007), available at http://www.

gnu.org/licenses/lgpl.html (last visited Dec. 1, 2007). Libraries are sometimes licensed
under the Lesser General Public License, which permits linking and distribution of literal
copies of libraries without imposing copyleft. Use of the LGPL is discouraged by the FSF.
Id.

77. 17 U.S.C. § 101 (2006) (defining derivative works to include translations of the
original work).

[Vol. XXV

DEADLY COMBINATIONS

itly describes translation as a modification that triggers copyleft. 78 Even
though translation of software may not result in any literal copying of
the original source code or object code, the original software is protected
beyond those literal elements.7 9 See Appendix A, Figure 8. The struc-
ture and form of the software can likewise be protected by copyright and
a translation can be infringing.80

Here is an example. Client publishes "Money In Your Pocket", a per-
sonal finance application that runs on smart phones. He has learned
that one of his programmers has taken a small sub-program from
OpenAccolade that calculates compound interest, made minor modifica-
tions, and used it in the MIYP software. Here, if the client has distrib-
uted the MIYP software, he has infringed on the OpenAccolade copyright
by copying part of the protected work and adapting it and may have trig-
gered the copyleft clause.81

D. APPLICATION OF ANALYSIS - THE ZONE OF UNCERTAINTY

The final step of the analysis is the zone of uncertainty, which in-
cludes software combinations where the GPL code is not used within the
proprietary code or vice versa. However, the two are nonetheless related
in origin or by some manner of interoperation. Conclusions made in the
zone of uncertainty are somewhat speculative; determining whether a
particular combination involves copying of protected expression can be a
highly fact-intensive inquiry, and without any court decisions to estab-
lish legal precedent for particular fact patterns, predictions involve a fair
amount of uncertainty.

Where GPL and proprietary software interoperate in some way, the
author of the proprietary software may be able to avoid the effect of
copyleft by avoiding distribution of his software with the GPL
software.8 2 The GPL appears to impose copyleft on all software that is
part of a distributed whole even if the proprietary software is only tan-
gentially related to the GPL software.8 3 Even proprietary software that
is an independent and separate work is subject to the copyleft terms if it
is distributed as part of a whole based on the GPL software.8 4 The GPL

78. GNU General Public License, supra note 19.
79. Whelan Assoc., Inc. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1248 (3d Cir. 1986).
80. Id.
81. While the facts indicate a prima facie case of infringement, the client may raise a

defense that the work is not protected expression, or that this is fair use under 17 U.S.C.
§107. That discussion is beyond the limited scope of this paper.

82. GNU General Public License, supra note 19. (distinguishing works published with
GPL software as part of a whole subject to copyleft, from the same works published apart
from GPL software).

83. Id.
84. Id.

20081 499

500 JOURNAL OF COMPUTER & INFORMATION LAW

does not define "whole," but it appears to broadly include any work bun-
dled with GPL software except mere aggregations.8 5 Proprietary
software that somehow interoperates with GPL software is likely to trig-
ger copyleft terms if the two are distributed together. The author of the
related work may avoid copyleft by distributing the GPL software inde-
pendently of the related work. This approach allows distribution of the
GPL-licensed software under the terms of the GPL and avoids the prob-
lem of distributing the combination as a whole.

Proprietary software that interoperates with, but is distributed in-
dependently of, GPL software may sidestep the rubric of the GPL
"whole," but risks imposition of copyleft if the licensor proves that the
proprietary software is a derivative work that was distributed. The FSF
asserts that the GPL may impose copyleft terms against software that
interoperates in some manner with GPL software, depending on how it
interoperates.8 6 Convincing a court that copyleft terms were triggered,
however, requires showing both derivation and distribution.

Proprietary software that incorporates GPL code as a dynamically
linked library probably creates a legally derivative work, but likely will
not trigger the GPL's copyleft terms if the library is not distributed with
the proprietary software.8 7 The proprietary program by itself does not
contain the object code from the GPL software and can easily be distrib-
uted without the dynamically linked library. The end user can get the
library independently and install it on his or her computer, all the while
complying with the GPL. When the end user runs the program, how-
ever, the program causes the operating system to copy the object code
from the dynamically linked library into memory and the program com-
municates with the library through shared memory space. See Appendix
A, Figure 9. Copying the object code from disk into memory can violate
the reproduction right of the copyright holder,8 8 and the publisher of the
proprietary software might be liable for contributory infringement for in-
ducing infringement by the end user.8 9 Further, the in-memory combi-
nation of the GPL library and the proprietary program that caused it to
be loaded creates an in-memory derivative work.90 The GPL, however,
gives liberal allowance for end users to execute GPL software without
constraints and given that an in-memory derivative work is not distrib-

85. Vetter, supra note 9, at 92 (discussing whether an alleged infringer might success-
fully raise a defense that the expansive reach of the GPL constitutes copyright misuse re-
mains to be decided by the courts).

86. Frequently Asked Questions about the GNU Licenses, Free Software Foundation,
http://www.gnu.org/licenses/gpl-faq.html (last visited Aug. 1, 2008).

87. Determann, supra note 45, at 1460.
88. MAI Sys. Corp. v. Peak Computer, 991 F.2d 511, 518 (9th Cir. 1993).
89. See generally Metro-Goldwyn-Mayer Studios Inc. v. Grokster, 545 U.S. 913 (2005).
90. Determann, supra note 45, at 1460.

[Vol. XXV

DEADLY COMBINATIONS

uted, it would not be subject to copyleft. 91 Without any direct infringe-
ment by the end user, there is no basis for contributory infringement by
the publisher of the software referencing that library.92

An argument that the proprietary program infringes on the GPL
software because it takes information about the GPL software's inter-
faces will not succeed. 93 For example, the parameters and data struc-
tures used to communicate with a library might be argued to be
protected expression.94 Interfaces and data structures, however, are
often considered as elements dictated by external factors or as scenes a
faire.95 The interfaces may be held to be functional elements, and unpro-
tected by copyright. 96 Finally, interfaces and data structures may be so
closely tied to the expression of interaction that the doctrine of merger
may prevent successful claims of infringement. 97

Most other means of interoperation between proprietary and GPL
software likely will not constitute a derivative work that would impose
the copyleft terms. Where the GPL and proprietary programs interoper-
ate through some means other than dynamic linking - for example, as
independent processes running on the same or separate computers - the
inquiry follows the same examination of the interface between the pro-
grams and the nature of data structures used to communicate. 98 Pro-
grams that communicate through some form of inter-process
communication ("IPC") such as sockets and named pipes must conform to
the interface and data standards imposed by those IPC mechanisms.
Since those external factors shape the contours of the interface and data
structures, those elements are probably not protected works. 99

Interoperability that is based on reading and writing files stored on
a disk probably does not constitute a derivative work, provided that the
file formats were legitimately reverse engineered or in the public do-
main. If the proprietary program has incorporated protected works from
the GPL program in order to read and write those files, then the work is
probably derivative under the suspect combinations analysis. However,
if the proprietary program's ability to read and write those programs was
the result of legitimate reverse engineering, that is likely to be fair use

91. GNU General Public License, supra note 19 ("The act of running the Program is
not restricted.").

92. Determann, supra note 45, at 1486.
93. Mitchell Stoltz, Comment, The Penguin Paradox: How The Scope of Derivative

Works in Copyright Affects the Effectiveness of the GNU GPL, 85 B.U.L. REV. 1439, 1451
(2005).

94. Id.
95. See, e.g., Computer Associates Int'l. v. Altai Inc., 982 F.2d 693, 709 (2d Cir. 1992).
96. Id. at 714.
97. See id. at 708.
98. Determann, supra note 45, at 1449.
99. Computer Associates Int'l., 982 F.2d at 709.

2008]

502 JOURNAL OF COMPUTER & INFORMATION LAW

under copyright law and seems unlikely to impose the copyleft terms on
the proprietary program. 10 0

The final inquiry in the zone of uncertainty concerns proprietary
software that neither incorporates GPL software nor makes use of it, but
is in some other way based on GPL software. For example, Pidgin is
GPL-licensed instant messaging software that works with multiple in-
stant messaging accounts and providers at the same time. Proprietary
software subsequently developed that supports multiple instant messag-
ing accounts in the same way may infringe on the GPL software. Here,
the inquiry is deeply fact-intensive and focuses on whether substantial
similarities exist between the proprietary software and the GPL
software. 10 1 Were such a case to come to trial, the court would likely
apply an abstraction/filtration/comparison analysis to separate ideas
from expression, isolate protected expressions, and compare those with
the alleged infringing work. 102

Here is an example. OpenAccolade provides a means of adding new
functionality through "snap-ins" - software extension modules that allow
licensed users of OpenAccolade to customize specific business transac-
tions within that software without rewriting the OpenAccolade source
itself. Writing the snap-in modules, however, is difficult even for exper-
ienced programmers. A client's program generates most of the code
needed to create a snap-in module, making it much easier to build one.
The program does not incorporate any code from OpenAccolade and the
client wants to keep the source as a trade secret in order to sell it for a
profit. In this instance, incorporating the snap-in module with OpenAc-
colade probably does create a derivative work and the snap-in itself is
likely subject to copyleft. But here, it is the end user, not the client, who
is creating the combination. The end user of GPL licensed software is
free to make use of the software and derivative works for his own use,
with few limitations. Provided that the end user is prohibited from dis-
tributing a snap-in without the code generated by the client's software,
there is no direct infringement by the end user or the client. Therefore
there is no contributory infringement for a derivative work. While the
client's software must incorporate some knowledge of the interfaces ex-
posed by OpenAccolade in order to generate the snap-in modules, those
interfaces are likely beyond copyright protection. 10 3 Finally, unless
OpenAccolade provides a similar means of creating the snap-in modules,
the client's software probably bears no substantial similarities to
OpenAccolade and is not an infringing work.

100. See generally Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992).
101. See generally Computer Associates Int'l., 982 F.2d 693.
102. Id. at 705-06.
103. Computer Associates Int'l., 982 F.2d at 709.

[Vol. XXV

2008] DEADLY COMBINATIONS 503

VI. CONCLUSION

Combinations of GPL software with proprietary software can often
result in copyright infringement and the viral terms of that license will
infect the proprietary source code under many circumstances. This pa-
per presented a framework for both technical and legal analysis to un-
cover both obvious and obscure forms of copying and to provide a basis
for determining whether particular technical combinations will impose
the viral copyleft terms on a whole work. That framework is intended as
an aid in assessing risk of infringement and mitigating ambiguity inher-
ent in the GPL copyleft terms.

504 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXV

APPENDIX A

_tmain(int argc, _TCHAR* argv[])

std::cout << "Hello world";

return 0;

Program "source code"
instructions are read by

compiler

compiler

linker

Compiler translates source
code into "object code" -

numeric codes for processor
data and instructions

Unker assembles the object
code into the executable

program and writes that file to
the disk

151D:0000 0E IF BA 0E 00 B4 09 CD-21 B8 01 4CCD 21 54 68
151D:0010 69 73 20 70 72 6 F 67 72-61 6D 20 63 61 6 E 6E 6F
151D:0020 74 20 62 65 20 72 75 6 E-20 69 6E 20 44 4F 53 20

151D:0030 6D 6F 64 65 2E 0D 0D OA-24 00 00 00 00 00 00 00
151D:0040 53 IA 4B 10 17 7B 25 43-17 7B 25 43 17 7B 25 43
151D:0050 30 BD5E 43 12 7B 25 43-30 BD 48 43 04 7B 25 43
151D:0060 D4 74 78 43 15 7 B 25 43-17 7B 24 43 5C 7B 25 43

151D:0070 30 BD 4B 43 IF 7B 25 43-30 BD 59 43 16 7 B 25 43

151D:0080 30 BD 5D 43 16 7B 25 43-52 69 63 68 17 7 B 25 43

151D:0090 00 00 00 00 00 00 00 00 -00 00 00 00 00 00 00 00

151D:OOAO 50 45 00 00 4 C 01 06 00 -IF 4D 2D 47 00 00 00 00
151D:00B0 00 00 00 00 EO 00 00 00 -0B 01 08 00 00 50 00 00

151D:00C0 00 50 00 00 00 00 00 00 -91 10 01 00 00 10 00 00
151D:00D0 00 10 00 00 00 00 40 00 -00 10 00 00 00 10 00 00

151D:000 04 00 00 00 00 00 00 00 -04 00 00 00 00 00 00 00

151D:00F0 00 B0 01 00 00 10 00 00 -00 00 00 00 03 00 00 00

Hello.exe

FIGURE 1

DEADLY COMBINATIONS

cP.,-PP lass Persist public IlPersist

DISPeCPPI class Doplay public view

}Ulcp ca tu lHandler public
Program consists of source

code in several files

compiler Compiler translates each file
with source code into object

code as a separate file

Dap.obi-

U~obl4

linker
Linker assembles the object

code into the executable
program and writes that file to

the disk

Prograrn-exe

FIGURE 2

2008]

771 771'7 -

506 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXV

P class Persist . public IPersist

FtSp-cpp class Display public view

UI.Wpp class UIHandler public

F i n { cpP int rin 0

return doProgram ()

compiler

Dip.obj1

Program consists of source
code in several files

Compiler translates each fi:e
with source code into object

code as a separate file

GrE; ph ib

linker

Linker combines the object
code and the copied code

from the library into the
executable program and
writes that file to the disk

Progranexe I

FIGURE 3

!!!!ii!!;! ili!i!iii!!i i

[

DEADLY COMBINATIONS

eracp Jass Persist ; public Ipersist

cp lass Display public view

UI1Z]cpp , cas tL tiandler public

M cp int main 0

return doProgram

Program consists of source
code in several files

Compiler translates each file
with source code into object

code as a separate file

Pbojl
iDtapob :!'!ii : i!, ; rpL cs !ll .

linker

Linker combines the object
code and enough information
to load the dynamic library

into the executable program
and writes that file to the disk

IfPrograree

Ldraphcsdll

FIGURE 4

2008]

508 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXV

Does combination of GPL and proprietary software
impose copyeft ers on proprietary softwaret /Probabl

Snot anQ derreatrve

.. no \ work /

Safe Harbor Analysis

Is proprietary software based on or combined with No
GPL software? copyleft

- required

w nwo nunderWas the new wrk 'distributed" no\GPL

A

is the relationship merely an aggregation on a
storage or disribution medium'

no

Suspecd Combinations Analei

./" Is GPL code incorporated INTO
proprietary software?

Literal copping of GPL code

GPL code in separate compilation unet

K Translation of GPL code (non literal copy)

Statlc linkng

yes

copgetng
probably

\infrnngg

Zone of Uncertainty

no sP sotare used no
roprietary software (or 00e

versaI?

Substantial
similarity
analysis

- How do GPL proprietary
software interoperate7

"eOth r an. f Dynamic lning

C nteroperatlion

Does interoperation embody no

protected expression? n

yes

Defenses

FIGURE 5

_ j

DEADLY COMBINATIONS

x

I

20081

-- V__

510 JOURNAL OF COMPUTER & INFORMATION LAW

2

H-

2.)

r=0 " 0

.C~ m J

[Vol. XXV

I *-~'-- 22~

I .:~'~'

22~~ ~*

0)
2)
6
-I

DEADLY COMBINATIONS

Original source -
C++ programming

language

#include <iostream>

int main(int argc, char - argv)

std::cout < 'Hello world" << 4%
return 0;

Object code for
original

0000000 457f 464. 0101 0001 0000 0000 0000 0000
0000010 0002 0003 0001 0000 84e0 0804 0034 0000
0000020 Oba4 0000 0000 0000 0034 0020 0008 0028
0000030 001d 001a 0006 0000 0034 0000 8034 0804
0000040 8034 0804 0100 0000 0100 0000 0005 0000
0000050 0004 0000 0003 0000 0134 0000 8134 0804
0000060 8134 0804 0013 0000 0013 0000 0004 0000
0000070 0001 0000 0001 0000 0000 0000 8000 0804
0000080 8000 0804 087c 0000 087c 0000 0005 0000
0000090 1000 0000 0001 0000 087c 0000 987c 0804
00000aO 987% 0804 0128 0000 01c4 0000 0006 0000
00000bO 1000 0000 0002 0000 0894 0000 9894 0804
000OOcO 9894 0804 OOeO 0000 OOeO 0000 0006 0000
00000d 0004 0000 0004 0000 0148 0000 8148 0804
000OOeO 8148 0804 0020 0000 0020 0000 0004 0000
00000f0 0004 0000 e550 6474 0750 0000 8750 0804
0000100 8750 0804 003c 0000 003c 0000 0004 0000
0000110 0004 0000 e551 6474 0000 0000 0000 0000
0000120 0000 0000 0000 0000 0000 0000 0006 0000
0000130 0004 0000 6c2f 6269 6c2f 2d64 696c 756e
0000140 2e78 6f73 322e 0000 0004 0000 0010 0000
0000150 0001 0000 4e47 0055 0000 0000 0002 0000
0000160 0006 0000 0009 0000 0003 0000 0008 0000
0000170 0001 0000 0005 0000 2801 2110 0000 0000
0000180 0008 0000 0009 0000 4bad cOe3 9814 430c
0000190 4979 b66b 0000 0000 0000 0000 0000 0000
00001a0 0000 0000 OOeb 0000 0000 0000 0057 0000
0000160 0012 0000 0010 0000 0000 0000 0000 0000
00001c0 0020 0000 001f 0000 0000 0000 0000 0000

Translated source -
Java programming

language

public class hello

public static void main (Stringf argo)

System.out.println("Hello World");

Object code for
translation

00000 feca beba 0000 2eO0 idO0 0007 0102 0500
0000010 6568 6c6c 076f 0400 0001 6a10 7661 2f61
0000020 616c 676e 4f2f 6a62 6365 0174 0600 693c
0000030 696e 3e74 0001 2803 5629 0001 4304 646f
0000040 0a65 0300 0900 000c 0005 0106 0f00 694.
0000050 656e 754e 626d 7265 6154 6c62 0165 0400
0000060 616d 6e69 0001 2816 4c5b 616a 6176 6c2f
0000070 6e61 2f67 7435 6972 676e 293b 0956 OeO0
0000080 1000 0007 010f 1000 616a 6176 6c2f 6e61
0000090 2f67 7653 7473 6d65 000c 0011 0112 0300
00000.0 756f 0174 1500 6.4 7661 2f61 6069 502f
00000b0 6972 746e 7453 6572 6d61 083b 1400 0001
00000c0 480b 6c65 6f6c 5720 726f 646c 000a 0016
00000d0 0718 1700 0001 6.13 7661 2001 6f69 502f
000OOe0 6972 746e 7453 6572 6d61 000c 0019 011a
00000f0 0700 7270 6e69 674 016e 1500 4c28 616.
0000100 6176 6c2f 6e61 2f67 7453 6972 676e 293b
0000110 0156 0a00 6f53 7275 6563 6946 6500 0001
0000120 680a 6c65 606c 6a22 7661 0061 0021 0001
0000130 0003 0000 0000 0002 0001 0005 0006 0001
0000140 0007 0000 O01d 0001 0001 0000 2a05 00b7
0000150 b108 0000 0100 000a 0000 0600 0100 0000
0000160 0100 0900 ObO00 cOO 0100 0700 0000 2500
0000170 0200 0100 0000 0900 OOb2 120d b613 1500
0000180 00bl 0000 0001 000a 0000 000a 0002 0000
0000190 0006 0008 0007 0001 O01b 0000 0002 001c

FIGURE 8

2008]

512 JOURNAL OF COMPUTER & INFORMATION LAW

2E -c E
c C " U (
0 8c=3o

c2 0

C 8EZ c)

cc) ci) =3
0 r

4- -iiiii!!

F i~j ; ;!j

0
5-8E

ci
CY)

0

(i

0

[Vol. XXV

F -7iiG:!~

	Deadly Combinations: A Framework for Analyzing the GPL’s Viral Effect, 25 J. Marshall J. Computer & Info. L. 487 (2008)
	Recommended Citation

	Deadly Combinations: A Framework for Analyzing the GPL's Viral Effect

