UIC John Marshall Journal of Information Technology & Privacy
Law

Volume 15
Issue 4 Journal of Computer & Information - Article 6
Summer 1997

Summer 1997

The West German Smorgasbord Approach to Intellectual Property
Protection of Computer Software, 15 J. Marshall J. Computer &
Info. L. 883 (1997)

Larry N. Woodard

Follow this and additional works at: https://repository.law.uic.edu/jitpl

b Part of the Computer Law Commons, Intellectual Property Law Commons, Internet Law Commons,

Privacy Law Commons, and the Science and Technology Law Commons

Recommended Citation
Larry N. Woodard, The West German Smorgasbord Approach to Intellectual Property Protection of
Computer Software, 15 J. Marshall J. Computer & Info. L. 883 (1997)

https://repository.law.uic.edu/jitpl/vol15/iss4/6

This Comments is brought to you for free and open access by UIC Law Open Access Repository. It has been
accepted for inclusion in UIC John Marshall Journal of Information Technology & Privacy Law by an authorized
administrator of UIC Law Open Access Repository. For more information, please contact repository@jmls.edu.

https://repository.law.uic.edu/jitpl
https://repository.law.uic.edu/jitpl
https://repository.law.uic.edu/jitpl/vol15
https://repository.law.uic.edu/jitpl/vol15/iss4
https://repository.law.uic.edu/jitpl/vol15/iss4
https://repository.law.uic.edu/jitpl/vol15/iss4/6
https://repository.law.uic.edu/jitpl?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol15%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol15%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol15%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/892?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol15%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1234?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol15%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/875?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol15%2Fiss4%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@jmls.edu

THE WEST GERMAN SMORGASBORD
APPROACH TO INTELLECTUAL
PROPERTY PROTECTION OF
COMPUTER SOFTWARE

I. INTRODUCTION

When reflecting upon the unprecedented growth of the computer in-
dustry, consumers frequently ask themselves: What will they think of
next? Unfortunately, this growth by the computer industry is un-
matched by an equaled surge of new and efficient regulation of the indus-
try’s intellectual property rights for computer software.l As a result,
members of the computer industry find themselves asking the
lawmakers: Why haven’t they thought of anything? If members of the
industry attempt to protect their valuable intellectual property in the
software, they are forced to gaze through the currently murky waters of
patents, copyrights, trademarks, and trade secrets.2 This confusion,
caused by legal inaction, leads to inefficient extremes of underprotection3
and overprotection* of intellectual property rights when applying copy-
right and patent law.5

1. Victoria Slind-Flor, A New Idea in Software Protection: A ‘Manifesto’ Calls for a
Unique Law That’s Neither Copyright Nor Patent, NaT'L L.J., Jan. 16, 1995, at A1, (quoting
James H. Lows, Microsoft corporate attorney, as saying that the $13 billion computer
software business would be potentially worth twice that if proper legal protection were
provided).

2. Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 712 (2d Cir. 1992). The
Altai court admitted outright that the “contours of copyright protection,” the predominant
method to protect computer-related material, are not completely clear. Id. The court hopes
that future cases will better define the limits of protection. Id. Unfortunately, these hopes
are thus far unfulfilled. Id,

3. lan C. Ballon & Heather D. Rafter, Computer Software Protection, 431 PLL/PaT 81,
87 (1996) (citing the congress’ classification of computer software as a “literary work” for
copyright protection cannot adequately protect the utilitarian nature of computer
software).

4. Id. at 106 (commenting that software patents which grant a twenty year monopoly
of intellectual property protection may overprotect and therefore harm the software
industry).

5. Lotus Dev. Corp. v. Borland Intl, Inc. (Lotus II) 788 F. Supp. 78, 91 (D. Mass.
1992). The court, here, was one of the first to allude to the forthcoming debate over the
adequacy of copyright protection for computer programs and the possibility of patent pro-
tection for software. Id.

883

884 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XV

Part of the lawmaker’s dilemma is that the concept and definition of
“software” is not easily related to the conceptual and definitional stan-
dards of current intellectual property protection.® Because software
tends to act more and more like hardware, the functional aspect of
software does not fit into the subject matter domain of copyright law,?
nor does software easily satisfy the “usefulness” requirement of the Pat-
ent Act.8 Nevertheless, by increasing the protection for the idea and
functionality® of software, lawmakers have demonstrated their under-
standing that heightened levels of technology require heightened levels
of protection.1?

This new protection comes in the form of an animal never-before
seen in the jungle of intellectual property law: the software patent.!
Through the software patent, lawmakers attempt to solve the problem,

6. Pamela Samuelson, et al., A Manifesto Concerning the Legal Protection of Com-
puter Programs, 94 CoLum. L. REv. 2308, 2310-24 (1994) [hereinafter Manifesto]. The
Manifesto argues that computer software allows computers to behave like machines with
certain functional and utilitarian aspects commonly demonstrated by inventions tradition-
ally protected by patents. Id. at 2312. The Manifesto makes the astute observation that
computer hardware is somewhat useless and non-functional without computer software
and vice versa. Id. The software allows the computer to “behave,” and this behavior, like
other patentable machines, is where the value lies. Id. at 2323.

The nature of the computer industry makes a semantically clear definition of “hard-
ware” and “software,” as well as their characteristics, increasingly difficult to articulate.
Id. Since patents traditionally protect hardware, and copyrights traditionally protect
software, this bright-line distinction between hardware and software contributes to the
problem of how the law should protect hardware and software, by either patent or copy-
right. Id. at 2324.

7. John A. Kidwell, Software and Semiconductors: Why Are We Confused, 70 MINN. L.
Rev. 533, 552 (1985) (noting that one of the difficult issues of protecting software by copy-
right is that software does not fit into the traditional “writing” definition of copyright law’s
scope).

8. David G. Luettgen, Functional Usefulness vs. Communicative Usefulness: Thin
Copyright Protection for the Nonliteral Elements of Computer Programs, 4 Tex. INTELL.
Pror. L.J. 233, 248-49 (1996) (explaining that software is not traditionally considered “use-
ful” for the purposes of protection under the Patent Act).

9. 17 U.S.C. § 30(a), (b) (1988 & Supp. 1990). Copyright law does not protect any
“jdea, procedure, process, system, method of operation, concept, principle or discovery” of a
protected work, while patent law does. Id. Traditionally, intellectual property that “func-
tions” is protectable only with a patent. See Patent Act, 35 U.S.C. §§ 1-376 (1988). In the
case of software, the software, for the most part, is protected by a copyright. However,
software causes the functional behavior of a computer, protectable by a patent. This makes
the software “functional.” Compare 35 U.S.C. §§ 102-03 (1988) with 17 U.S.C. § 102(b)
(1988 & Supp. 1990) (showing the difference in qualifications in obtaining a patent with the
scope of intellectual property protected by a copyright).

10. Diamond v. Diehr, 450 U.S. 175, 184-86. The court realized that the increased use
of computers in society and thus allowed computers and digital machines protectable under
35 U.S.C. § 102, the Patent Act. Id.

11. Id.

1997] THE WEST GERMAN SMORGASBORD 885

but they certainly do not resolve the problem.12 The great optimism for
the new software patent is met with paralleled pessimism, with argu-
ments that the patent is overprotective of intellectual property and diffi-
cult to grant without the historical “prior art” used to issue patents.13
Likewise, copyright protection cannot adequately protect the innately
functional medium of computer software.14 To date, legal scholars con-
clusively appear to agree to disagree: given the current level of technol-
ogy and the functional aspect of software, the application of copyright
law is obsolete and underprotective,1® while on the other hand, software
patents are difficult to issue and are inefficient.16

This comment focuses on the current gaps in copyright and patent
protection for computer software products. First, this comment provides
the necessary background of copyright and patent law as it pertains to
computer products. In doing so, this comment briefly discusses the appli-
cation of intellectual property law to current computer technology. Then,
this comment analyzes the positive and negative aspects of copyright
and patent law by demonstrating the advantages and the difficulties of
applying copyrights and patents to computer software. Finally, utilizing
the favorable aspects of both copyright and patent law in a “smorgas-
bord” approach, as well as applying economic and industry efficiency
analysis of a West German rationale, this comment concludes with a pro-
posal for a viable alternative to current intellectual property protection.

II. BACKGROUND
A. TaHE FaLvracy oF A SOFTWARE-HARDWARE DISTINCTION

“The computer is no better than its program.”1?
Historically, the computer industry divides its technological endeav-
ors into three types: (1) hardware: the physical device itself, collection of
transistors, and integrated circuits (i.e., semiconductors or “microchips”);

12. Thomas P. Burke, Software Patent Protection: Debugging the Current System, 69
Notre DaME L. Rev. 1115, 1115-16 (1994). Due to inefficient and ineffective intellectual
property protection, the software industry suffered a $9.7 billion dollar loss in 1992, and a
$7.4 billion dollar loss in 1993. Id. at 1115. The article attributes the reduction of losses in
1993 to the increased protection provided by the newly instituted “software patent.” Id.

13. 35 U.S.C. §§ 102-12 (1988). “Prior Art” is the material that the patent office com-
pares with the application material to ascertain whether the material applying for a patent
is a useful “point of novelty.” Id.

14. Luettgen, supra note 8, at 240-41 (noting that copyright protects the “form of com-
puter software,” but cannot protect the “mechanical and utilitarian aspects” of software).

15. Luettgen, supra note 8, at 262-63 (showing how copyright law promotes disclosure
because copyright traditionally protect communicative works).

16. Ballon & Rafter, supra note 3, at 105 (explaining the inconsistent application of
patents by the Patent and Trademark Office).

17. JoBHN BARTLETT, BARTLETT'S FAMILIAR QUOTATIONS 876 (15th ed. 1980) (quoting El-
ting Elmore Morison, Men, Machines and Modern Times).

886 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XV

(2) software: the code that ultimately resides in the microchips, telling
the hardware what to do; and (3) algorithms: the purely abstract rou-
tines for accomplishing the processing goals of the system.1® Both
software and hardware can express any algorithm, making software and
hardware functionally equivalent.l® Despite this fact, courts, in most
cases, consistently apply copyright law to software and patent law to
hardware.2® This continuing denial of a hardware—software equiva-
lence has lead to judicial inconsistencies and “scientifically untenable de-
cisions.”2! Thus, the similarity of software and hardware requires a
similar means of protection.22

18. Note, Computer Intellectual Property and Conceptual Severance, 103 Harv. L. Rev.
1046, 1047 (1990).

19. Id. For example, software can express an algorithm in a programming language,
while hardware can express the same algorithm in an integrated circuit. Id. Upon activa-
tion, the same algorithm in software or hardware generates the same end intended by the
programming language. Id.

20. Ronald S. Laurie & Jorge Contreras, Application to the Doctrine of Equivalents to
Software-Based Patents, 292 PLI/PaT 689, 710-11 (1990). As early as 1964, courts blurred
the distinction between hardware and software by noting that hardware and software are
merely different means of achieving the same result. Id. at 710. See also Bullard Co. v.
General Elec. Co., 348 F.2d 985, 992 (W.D. Va, 1964) (holding that although both electronic
machine controllers and patented mechanical machine controllers did not function the
same way, both machines achieved the same results); Hughes Aircraft Co. v. United States
717 F.2d 1351 (Fed. Cir. 1983) (holding that although hardware and software differed in
efficiency and in their respective methods of achieving a function, nevertheless, the func-
tions were equivalent); Pennwalt Corp. v. Durand-Wayland, Inc., 225 U.S.P.Q. 558 (N.D.
Ga. 1984), aff'd en banc, 833 F.2d 931 (Fed. Cir. 1987), cert. denied, 485 U.S. 961 (1988).

21. James R. Goodman, et al., Toward a Fact-Based Standard for Determining
Whether Programmed Computers are Patentable Subject Matter: The Scientific Wisdom of
Alappat and Ignorance of Trovato, 77 J. PaT. [& TRADEMARK] OrF. Soc’y 353, 361 (1995).
The article argues that in In re Alappat, 33 F.3d 1526, 1543 (Fed. Cir. 1994), the court
accurately observed that the judicially created exception of algorithms to § 101 of the Pat-
ent Act is trumped by the congressional intent of § 101, namely that § 101 should “cover
anything under the sun.” Id. The article notes that of the four recent decisions in the
Federal Circuit, In re Alappat, 33 F.3d 1526; In re Warmerdam 33 F.3d 1354 (Fed. Cir.
1994); In re Lowry 32 F.3d 1579 (Fed. Cir. 1994); and In re Trovato 42 F.3d 1376 (Fed. Cir.
1994), only In re Trovato held a computer program unpatentable. Id. Consequently, the
hardware-software distinction created inconsistency in four Federal Circuit cases in the
same year. Id.

22. A. TANENBAUM, STRUCTURED COMPUTER ORGANIZATION 11 (2d ed. 1984). The au-
thor states the software-hardware similarity as follows: “hardware and software are logi-
cally equivalent . . . any operation performed by software can also be built directly into
hardware and any instruction executed by hardware can be simulated in
software [TThe decision to put certain functions in hardware and others in software is
based on such factors as cost, speed, reliability, and frequency of expected changes.” Id. at
11-12.

1997] THE WEST GERMAN SMORGASBORD 887

B. CorYRIGHT LAw AND COMPUTERS
1. Copyright In General

Congress, through the National Committee on New Technological
Uses of Copyrighted Works (“CONTU”),23 declared that computer pro-
grams, as intellectual property, are entitled to copyright protection.24
Traditionally, copyrights protect original works that are fixed in a tangi-
ble medium of expression where such medium is “perceived, reproduced,
or otherwise communicated.”?®> However, the Copyright Act specifically
limits this by denying protection for “ideas, procedures, processes, or
methods of operation.”2¢ For a corporate entity, a copyright grants pro-
tection to the material in question for a period of seventy-five years from
the date of publication, or one-hundred years from the date of creation,
whichever expires first.27 Unlike patent protection,2® the protection of
copyrighted material begins as soon as the work becomes “fixed.”2? In
addition, the issue of whether an infringement occurs merely because
two works are similar, or identical, is never determined by copyright
law.30 This issue turns on whether the works were independently cre-
ated.3! Therefore, to establish a claim of copyright infringement, the
plaintiff must prove: (1) ownership of a valid copyright, and (2) copying
of constituent elements of the work that are original.32

23. Arthur Miller, Copyright Protection For Computer Programs, Databases, and Com-
puter-Generated Works: Is Anything New Since CONTU?, 106 Harv. L. Rev. 977 (1993). In
1976, CONTU considered computer programs as “literary works” for the purpose of intel-
lectual property protection. See H. R. Rep. No. 1476, 94th Cong., 2d Sess. 116 (1976), re-
printed in 1976 U.S.C.C.AN. 5731. This instruction by CONTU was codified under 17
US.C. §101. Id.

24. 17U.S.C. § 101 (1988 & Supp. 1990). A computer program is “a set of statements
or instructions to be used directly or indirectly in a computer in order to bring about a
certain result,” thereby making computer programs eligible for protection under a copy-
right theory. Id.

25. 17 U.S.C. § 102(a) (1988 & Supp. 1990).

26. 17 U.S.C. § 30(b) (1988 & Supp. 1990) (stating the limits of copyright protection).

27. 17 U.S.C. § 30(a), (b) (1988 & Supp. 1990).

28. 35 U.S.C. § 102 (1988 & Supp. 1990). Pursuant to this statute, the protection for
patented material does not begin until the patent is granted. Id.

29. 17 U.S.C. § 102(a) (“fixed in any tangible medium of expression”). See also Miller,
supra note 23, at 987. Miller contends that computer programs are sufficiently “fixed” for
copyright law to protect them. Miller, supra note 23, at 987. Before CONTU, debate took
place over whether a computer program is sufficiently “fixed” for the purposes of the Copy-
right Act. Miller, supra note 23, at 988. CONTU decided that due to the amount of time
that a program is inside the memory, and the hypothetical possibility that a computer
could remain running ad infinitum, a computer program is “fixed,” and therefore, copy-
rightable. Miller supra note 23, at 988.

30. Feist Publications Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 361 (1991).

31. Id.

32. Id. The Feist court noted that in most computer software cases, the first prong—
proving ownership of the copyright—is basically a technicality. Id. at 362.

888 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XV

2. Copyright for Computers
a. Literal Elements and the Fair Use Exception

In deciding a software copyright issue, the courts must understand
and determine the extent of copyright protection for the “elements” of a
computer program.33 These elements are subdivided in two parts, literal
and nonliteral. “Literal” elements are the source code and object code of
the program,3¢ while “nonliteral” elements are the structure, sequence,
organization, and computer-user interface of the program.35 When pro-
tecting the literal elements of software, most defendants assert that “re-

33. 17U.S.C. § 101 (1988). Congress amended the Copyright Act in 1980 to specifically
include software, making only the literal elements software protectable under copyright.
Id. Since 1980, many courts have upheld the notion of protectability for both the source
code and the object code of software. See, e.g., Apple Computer, Inc. v. Franklin Computer
Corp., 714 F.2d 1240, 1246-47 (3d Cir. 1983) (holding that both object code and source code
are protectable); Midway Mfg. Co. v. Strahon, 564 F. Supp. 741, 749-52 (N.D. Ill. 1983)
(holding that even when the object code or source code is embodied in a computer chip, the
respective codes are protectable); Stern Elecs., Inc. v. Kaufman, 669 F.2d 852, 855 (24 Cir.
1982) (holding that source code is protectable); Tandy Corp. v. Personal Micro Computers,
Inc., 524 F. Supp. 171, 173 (N.D. Cal. 1981) (holding for the protectability of both types of
codes in computer chips).

34. Engineering Dynamics, In¢. v. Structural Software, Inc., 26 F.3d 1335, 1341 (5th
Cir. 1994). The source code is the programming language that is readable by human pro-
grammers. Id. The source code is then translated through a process, known as compilation
or assembly, into the “object code.” Id. The object code is the binary expression, readable by
the computer, that controls the computer hardware. Id. A skilled programmer can read
and understand small sections of the object code, but a programmer cannot develop a work-
ing understanding of a program by viewing only its object code. Bateman v. Mnemonics,
Inc., 79 F.3d 1532, 1542 (11th Cir. 1996).

35. TANENBAUM, supra note 22, at 12. The following are explanations of key terms in
computer copyright technology: first, “computer hardware” consists of the machine itself,
while computer software is the set of instructions, written by programmers that tell the
hardware to perform certain tasks. TANENBAUM, supra note 22, at 12. These instructions
are in the form of mathematical computations known as “algorithm.” TANENBAUM, supra
note 22, at 12. Software or hardware can express any algorithm. TANENBAUM, supra note
22, at 12.

Next, software is usually divided into two categories: operating systems and applica-
tion systems. TANENBAUM, supra note 22, at 13. Operating systems control the internal
operations of the computer by transferring data from one point to another, while applica-
tion systems tell the operating systems to instruct the computer to perform a certain task
like word processing. TANENBAUM, supra note 22, at 13.

Finally, the hardware, operating system, application software and user communicate
through “interfaces.” Timothy S. Teter, Note, Merger and the Machines: An Analysis for the
Pro-Compatibility Trend in Computer Software Copyright Cases, 45 Stan. L. REv. 1061,
1063 (1993). The system communicates with the user through a “user interface” which
could consist of images on a monitor, as well as the keyboard or mouse. Id. For the entire
system to function, the components must be “compatible,” i.e., communication must flow
uninterrupted throughout the system. Id.

1997] THE WEST GERMAN SMORGASBORD 889

verse engineering”36é of a computer program constitutes a “fair use”37
under the Copyright Act.38 The fair use defense, also known as the fair
use exception, is applicable when a programmer has no alternative but to
copy the program verbatim in order to gain an understanding of the un-
copyrightable ideas and functional aspects of a work.39

b. Nonliteral Elements and the A-F-C Test Variations

It was not until recently that courts began to focus on the possibility
of copyright protection for nonliteral elements of a program.4® Courts
have struggled with applying copyright law to the nonliteral elements of
a program. More specifically, they are not able to ascertain whether the
nonliteral elements contain protectable material pursuant to the Copy-
right Act, or merely ideas and functions that are not protected under the
Act.41 Many courts are attempting to separate the nonprotectable func-
tional elements from the protectable expressive elements, via the “ab-
straction-filtration-comparison” test (“a-f-c” test).42 This test is applied

36. Mark Aaron Paley, A Model Software Petite Patent Act, 12 SaNTA CLARA COMPUTER
& Hicu TecH. L.J. 301, 343 (1996). Generally, “reverse engineering” refers to a variety of
activities used to reveal the design of computer software. Id. For example, “Black Box”
reverse engineering analyzes the input and output of a program without viewing the pro-
gram’s internal design. Id. This kind of reverse engineering attempts to make a program
compatible with another. Id. More intrusive reverse engineering “disassembles” or
“decompiles” software via special software used to translate machine object code into
human-readable source code. Id. This decompiled code can reveal the design and engineer-
ing of the computer program. Id.

37. 17 U.S.C. § 107 (1988). Section 107 of the Copyright Act provides an affirmative
defense to allegations of copyright infringement by asserting that the copying of the prod-
uct in question was done as a “fair use.” Id. Specifically, the statute suggests balancing
four factors in order to assert the fair use defense: (1) the purpose and character of the use,
taking into consideration whether the use is commercial or nonprofit in nature; (2) the
nature of the copyrighted work; (3) the amount and substantiality of the portion used in
relation to the copyrighted work as a whole; and (4) the effect of the fair use upon the
potential market for or value of the copyrighted work. Id. An example of fair use of copy-
righted material is material photocopied for educational purposes. Id.

38. Paley, supra note 36, at 344,

39. Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1527-28 (9th Cir. 1993). See also
Atari Games Corp. v. Nintendo of Am., Inc. 975 F.2d 832, 844-45 (Fed. Cir. 1992) (demon-
strating two examples of the “fair use” defense asserted in copyright infringement proceed-
ings of reverse engineering of computer programs).

40. Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc. 797 F.2d 1222, 1233-35 (3d. Cir.
1986), cert. denied, 479 U.S. 1031 (1987). This was the first case to define the scope of
copyright protection for nonliteral elements. Id.

41. Altai, 982 F.2d at 712. The confusion of the current state of copyright protection
for computer software mentioned in Alfai is mostly due to the difficulty in separating the
protectable expressive material from the nonprotectable functional material. Id.

42. Gates Rubber Co. v. Bando Chem. Indus., Ltd. 9 F.3d 823, 834 (10th Cir.
1993).This court stated the a-f-c test as follows:

890 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XV

by the majority of the courts.4? However, Judge Keaton in Lotus Devel-
opment Corporation v. Paperback Software International (Lotus I)**
noted that lawmakers cannot deceptively rely on a formula such as the a-
f-c test in its entirety.45 Instead, Keaton in Lotus I favors a strict case-
by-case analysis with regards to computer software cases.46

In 1981, the Supreme Court in Diamond v. Diehr47 opened the door
for the potential patentability of scientific principles or abstract ideas
based upon mathematical computations embodied in computer
software.4® Subsequent to this Supreme Court decision, Congress finally
recognized the need for increased and specialized protection of semicon-
ductor chip products.4® However, this same special level of protection

First, in order to provide a framework for analysis, we conclude that a court should
dissect the program according to its varying levels of generality as provided in the
abstractions test. Second, poised with this framework, the court should examine
each level of abstraction in order to filter out those elements of the program which
are unprotectable. Filtration should eliminate for comparison the unprotectable
elements of ideas, processes, facts, public domain information . . . and other unpro-
tectable elements suggested [TThird, the court should then compare the re-
maining elements with the allegedly infringing program to determine whether the
defendants have misappropriated substantial elements of the plaintiff’s program.
Id.

43. See generally Mitek Holdings, Inc. v. ARCE Eng’g Co., 864 F. Supp. 1568 (S.D. Fla.
1994); Altai, 982 F.2d 693; Gates Rubber, 9 F.3d 823; Engineering Dynamics, 26 F.3d 1335.
The Supreme Court recently upheld, in a 4-4 decision, with Justice Stevens not participat-
ing, Judge Keaton’s version of the Altai a-f-c test. Lotus Dev. Corp. v. Borland Intl, Inc.,
116 S. Ct. 804 (1996). The standard of the a-f-c test, as upheld by the Supreme Court,
states:

First, in determining copyrightability, one must focus upon alt.ernatives from
any source, to some conception of definition of the “idea, “system,” “process,” “pro-
cedure,” or “method”—for the purpose of dlstmgmshmg the idea, system, purpose,
process, procedure, or method, from the expression.

Second, one must focus upon whether an alleged expression of the idea, sys-
tem, process, procedure, purpose, or method is limited to elements essential to the
expression of that idea, system, process, etc., or instead includes identifiable ele-
ments of expression not essential to every expression of that idea, system, process,
ete.

Third, having identified the elements not essential to every expression of the
idea, system, process, etc., one must then focus on whether those expressive ele-
ments, taken together, are a substantial part of the work.

Lotus II, 788 F. Supp. at 90.

44. 740 F. Supp. 37 (D. Mass. 1990).

45. Id. at 52.

46. Id.

47. 450 U. S. 175 (1981).

48. Id. at 184

49. 17 U.S.C. 88 901-06 (1984). In 1984, the Semi-Conductor Chip Protection Act was
created to deal especially with the nuances created by computer technology. Id. The act
defines exactly what and how electronic circuitry functions are protected by copyright, as
well as the ownership and licensing of copyrights of electronic property, and the limitations
of the copyright through reverse engineering. Id. See supra note 36 and accompanying
text (defining “reverse engineering”).

1997} THE WEST GERMAN SMORGASBORD 891

was not afforded software. Thus, the interchangeable funtionality of
software and hardware leads to the conclusion that software needs the
same patent protection as provided hardware.50

C. PaTeENT LAW AND COMPUTERS
1. Patent Law in General

Generally, patent statutes are intended to protect creative works for
utilitarian objects and processes.51 Patents are granted to whomever in-
vents or discovers any process, machine, manufacture, matter, composi-
tion, or any improvement thereof that is a novel,52 useful,53 and non-
obvious54 invention.55 Patent law contains the implicit notion that the
production of some “prior art” is needed to demonstrate the desirability
and, therefore, non-obviousness of the contribution.5¢ Also, a patent for
useful combinations (commonly known as “means-plus-function claims”)
is obtainable.57

Unlike copyrights, patents are granted for shorter periods of time,
and the scope of patent rights are relatively broad.58 Moreover, to facili-
tate innovation and increase the flow of information, patent statutes re-

Congress does not provide the same increased level of protection for the software in-
dustry that Congress provides for the semiconductor chip industry. The difficulty of differ-
entiating between hardware and software, coupled with the extreme growth of the software
industry, points to Congress taking the same measures for protection of software as it did
with semiconductors. See also Kidwell, supra note 7 (noting the difference of protection in
software and semiconductors, the similarity in the two industries, and the need for in-
creased software protection).

50. Hearing on The Intellectual Property Antitrust Protection Act Before the House Ju-
diciary Committee, H.R. 2674 (Tues., May 14, 1996) (congressional testimony of Jacob
Frank, industry attorney). Frank notes the hardware/software similarity is reflected in the
computer industry by stating that fourteen companies are developing operating system
software for their respective hardware. Id.

51. 35 U.S.C. §§ 1-376 (1988).

52. 35U.S.C. § 101 (1988). “Novel” means that the invention must be “new . . . subject
to the conditions of this title.” Id.

53. 35 U.S.C. § 101 (1988) (prohibiting inventions which are frivolous or injurious to
the well-being of society, such as mischievous or immoral inventions).

54. 35 U.S.C. § 103 (1988). “[Olbviousness is a legal determination . . . to a person
having ordinary skill in the art at the time the invention was made.” Id.

55. 35 U.S.C. § 101 (1988) (explaining the need for patentable material to contain all
three requirements of novelty, usefulness, and non-obviousness).

56. 35 U.S.C. §§ 102-12 (1988) (defining “prior art.”)

57. 35U. S. C. §112 { 6 (1988). A “means-plus-function” claim is: “An element in a
claim for a combination may be expressed as a means or step for performing a specified
function without the recital of structure, material, or act in support thereof, and such claim
shall be construed to cover the corresponding structure, material, or acts described in the
specification and equivalents thereof.” Id.

58. Compare 35 U.S.C. §§ 102-03 (1988) with 17 U.S.C. § 102(b) (1988 & Supp. 1990)
(comparing the scope and length of protection for patents and copyrights, respectively).

892 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XV

quire that the inventor describe his or her invention, proving that the
invention is distinguishable and the preferred version or “best mode” of
the invention as of the filing date.5® Accordingly, the inspection of prior
art and proof of best mode and usefulness requires more effort and is,
therefore, more expensive than a copyright application.

2. The Patentability of Computer Programs

Over the past three years, courts have frequently accepted and im-
plemented software patents.8° However, these cases are not without is-
sue. In attempting to match patent law to software, lawmakers address
the following two issues: (1) whether the software, hardware, or al-
gorithm is patentable matter; and (2) whether patent law requirements
of written disclosure to describe, enable, and provide the best mode for
practicing an invention are consistent with the software industry.6* For
example, the courts deny protection for reciting an algorithm, yet provide
protection for an algorithm-based invention as long as the invention
could provide novelty in a means-plus-function format.52

In attempting to comply with section 112 of the Patent Act, the “en-
ablement” requirement mandates that the party seeking a patent dis-
close the invention to a point where others have the power to replicate
the invention.63 The courts, however, are undecided as to whether a

59. 35 U.S.C. § 112 (1988). “Best mode” analysis has two requirements. Id. The first
inquiry focuses on, at time of filing the application, whether the inventor considered that
the mode used in the invention is considered better than any other. Id. This is a subjective
determination, focusing on the applicant’s state of mind. In re Hayes Microcomputer
Prods., 982 F.2d 1527 (Fed. Cir. 1992). If the inventor did have a best mode, then the
Patent and Trademark Office determines if the disclosure of the invention is adequate so
that another can practice the invention. Id. This is an objective determination. Id. The
inventor cannot conceal a better method for performing or manufacturing the invention.
Id.

60. See Goodman, supra note 21, at 354 (questioning the rationale of the Trovato deci-
sion, which is one of the few decisions to deny patentability to a computer program).

61. 35 U.S.C. § 112 § 1 (1988) (describing the disclosure requirements mandated by
the Patent Act).

62. Gustavo Siller, Jr. & Jonathan E. Retsky, Patent and Trade Secret Protection of
Computer Technology, 6 SOFTWARE L.J. 239, 246-54 (1993) (providing an excellent summa-
tion and judicial history of the struggle to define the new software patent). See also supra
note 57 (defining & “means-plus-function claim”).

63. 35 U.S.C. § 112 (1988). See also Burke, supra note 12, at 1125. A software patent
is often compared to a drug patent. Burke, supra note 12, at 1125. Thus, some courts use
the enablement guidelines for drug patents and apply these to software. Burke, supra note
12, at 1125. These factors summarized by the Federal Circuit Court are: (1) the quantity
of experimentation necessary, (2) the amount of direction or guidance presented, (3) the
presence or absence of working examples, (4) the nature of the invention, (5) the state of
the prior art, (6) the relative skill of those in the art, (7) the predictability or unpredictabil-
ity of the art, and (8) the breadth of the claims. In re Wands, 858 F.2d 731, 737 (Fed. Cir.
1988).

1997] THE WEST GERMAN SMORGASBORD 893

programmer must disclose the source code84 in the patent application.65
If a source code is not required, flow-charts and other information must
provide adequate direction for a programmer of average skill to imple-
ment the program without “undue experimentation.”68

Unlike the enablement requirement, the best mode requirement in-
volves a subjective inquiry that requires evidence that the inventor
knowingly concealed the “best mode” of the invention.67 Under best
mode, the court in In re Sherwood®® decided that in most cases, the ac-
tual disclosure of the entire program is required.5® The court also noted
that lack of disclosure, resulting in concealment, causes the patent to be
denied.?0

The Patent and Trademark Office (“‘PTO”) cannot accept or deny pat-
ent applications for computer programs with the same efficiency and con-
fidence as other types of inventions due to the absence of prior art with
which to compare these programs.’! The lack of efficiency and confi-
dence delays innovation and the free flow of information, as well as in-
creases the social and actual costs of obtaining a software patent.”2 The
lack of software patent prior art brings the PTO to a paradox. This para-
dox is in order to issue patents efficiently, the PTO must possess ade-
quate prior art; yet, in order to obtain an adequate quantity of prior art,
the office must issue patents. The following section sets forth a solution
to this paradox. .

III. ANALYSIS

For computer software, intellectual property protection raises ques-
tions involving an infusion of answers from science, technology, econom-

64. The instructions a programmer writes to control a computer’s future operation—to
make the program compatible with the respective system.

65. Lawrence Kass, Computer Software Patentability and the Role of Means-Plus-
Function Format in Computer Software Claims, 15 Pace L. Rev. 787, 792 (1995) (arguing
that Congress should have determined whether applicants should disclose the source code,
object code, flowcharts, or a combination thereof).

66. In re Vaeck, 947 F.2d 488 (Fed. Cir. 1991). Enablement empowers others to repli-
cate the patented invention. Id. at 492. Although not specifically stated in the statute,
enablement requires that “those in the art can make and use the invention without ‘undue
experimentation.’”” Id. Some experimentation is required, as long as the amount of experi-
mentation is not “fatal.” Id.

67. See supra note 59 (defining “best mode”).

68. 613 F.2d 809 (C.C.P.A. 1980), cert. denied, 450 U.S. 994 (1981).

69. Id. at 815.

70. Id. The court also provided the penalties for concealment and nondisclosure of the
entire computer program in applying for a software patent. Id.

71. Paul A. Mendonsa, Patent Protection for Multimedia Products, 467 PLL/Pat 235,
249 (1997) (stating that the PTO examiners cannot show the statutory requirements of
obviousness and novelty due to the lack of prior art).

72. See infra note 128 (discussing transaction cost analysis and the Coase theorem).

894 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XV

ics, law, and politics.”3 Today, the law provides a “patchwork of legal
protection” applying patent and copyright protection to software.”¢ This
application reveals the inability of patent or copyright law to adequately
protect the actual and abstract portions of the intellectual property of
computer software. Nonetheless, only the law possesses the true author-
ity to protect the inventions of computer technology that, by their very
nature, are expensive to develop but inexpensive to copy.?> In light of
the potential eradication of the software industry’s intellectual property
value, as well as the industry’s eventual competitive market failure, the
software industry requires new intellectual property protection as its
saving grace.”6

A. Pros anD Cons oF COPYRIGHTS FOR COMPUTER SOFTWARE
1. The Positive Aspects of Copyrights for Software

CONTU equates computer programs to “literary works”?? for classi-
fication and protection purposes.’® In some instances, this classification
of “literary work” works to the advantage of software manufacturers.
First, a copyright allows a programmer, to a certain extent, to protect the
“creativity, originality, and insight” that was involved in the process of
conceptualizing a computer program.”® To this end, copyright law allows
the programmer the protection of individuality within the confines of bi-
nary language and nonliteral elements, just as a poet conveys a complex

73. Peter S. Menell, The Challenges of Reforming Intellectual Property Protection for
Computer Software, 94 CoLumM. L. REv. 2644 (1994).

74. Note, supra note 18, at 1049.

75. See Kidwell, supra note 7, at 533. Kidwell observes that both the software indus-
try and the semi-conductor chip industry have the unique combination of high development
costs and low copying costs. Kidwell, supra note 7, at 588. By analogy, Kidwell argues that
Congress should protect software as it protected semi-conductors in the Semi-Conductor
Chip Protection Act of 1984. Kidwell, supra note 7, at 588. See also 17 U.S.C. §§ 901-06
(1984).

76. See Manifesto, supra note 6, at 2430 (highlighting the current market-destructive
behavior of the current intellectual property system through the misappropriation of pro-
gram behavior within the intellectual property system).

77. Miller, supra note 23, at 988-89.

78. 17 U.S.C. § 101 (1988). The post-CONTU version of the Copyright Act states that
computer programs are literary works: “Works, other than audiovisual works, expressed in
words, numbers, or other verbal or numerical symbols or indicia, regardless of the nature of
the material objects, such as books, periodicals, manuscripts, phono records, film, tapes,
disks, or cards, in which they are embodied.” Id.

79. Lotus Dev. Corp. v. Borland Intl, Inc. (Lotus II), 788 F. Supp. 78, 96 (D. Mass.
1992). In this case, the court alludes to the possibility of patent protection encompassing
the ideas included in software. Id. Notwithstanding, Judge Keaton still advocates the use
of copyrights for most computer programs, while realizing the uselessness of bright-line
rules and the difficulty of foreseeing technology levels and according levels of intellectual
property protection. Id.

1997] THE WEST GERMAN SMORGASBORD 895

message within the confines of the medium of poetry.8¢ Second, the lim-
ited scope and lower standards of the copyright makes the copyright
much easier to obtain, compared to other forms of intellectual property
protection.8! The copyright’s ease of obtainability avails itself perfectly
to the incremental innovation of the computer industry.82 Third, com-
paratively speaking, computer companies obtain and maintain copyright
protection for far less cost than other intellectual property protection.83
And finally, protection of the expressive work begins automatically with
the creation of the work.84 Through these means, the copyright unques-
tionably provides an easy, quick, and economical way for software com-
panies to protect expressive8> elements of software.

2. The Negative Aspects of Copyrights for Software

According to Computer Associates International v. Altai,86 copyright
law aims to establish a “delicate equilibrium [between] afford[ing] pro-
tection to authors as an incentive to create, and . . .appropriately
limit[ing] the extent of . . . protection to avoid monopolistic stagnation.”8?
Unfortunately, the current application of copyright law to computer

80. See Miller, supra note 23, at 984. Extending the “literary work” metaphor, Miller
states: “Just as no two novelists independently would compose the same detailed plot of
the downfall of a tragic hero . . . no two programmers independently would design a pro-
gram that enabled the computer to solve highly intricate problems with the same struc-
tural details, let alone the precisely the same set of instructions.” Id.

81. Pamela Stern, The Bundle of Rights Suited to New Technology, 47 U. Prrr. L. REV.
1229, 1247 (1986). Because the patent protects more of the intellectual property, namely
the idea and functionality of the product, the patent is more difficult to obtain than a copy-
right with regards to time, effort, proof of novelty, and non-obviousness. Id.

82. See Manifesto, supra note 6, at 2346. The Manifesto observes that Congress real-
ized the incremental nature of the computer industry by passing the Semi-Conductor Chip
Act of 1984. Manifesto, supra note 6, at 2346. The Manifesto then argues that Congress
should provide the same sort of protection for computer software. Manifesto, supra note 6,
at 2346.

83. Himanshu S. Amin, The Lack of Protection Afforded Software Under the Current
Intellectual Property Laws, 43 CLev. St. L. Rev. 19, 22 (1995). The approximate cost of
obtaining a software patent exceeds $10,000. Id. The excessive cost is associated with the
effort of preparing the application for a patent, filing the application, and the lengthy exam-
ining of the application by the Patent and Trademark Office. Id.

84. Id. at 23.

85. Recall, the copyright only protects the “expressive” portion of the work, leaving the
remaining “idea, procedure, process, system, method of operation, concept, principle, or dis-
covery” unprotected. See 35 U.S.C. §§ 102-103 (1988) and 17 U.S.C. § 102 (1988 & Supp.
1990) (comparing the scope of copyright and patent protection).

86. 982 F.2d 693 (1992).

87. LotusII, 788 F. Supp. at 96. The court states that all courts must keep the mainte-
nance of this “delicate equilibrium” in mind when applying the federal copyright act to
software. Id. The court further notes that as of this opinion other courts “grappled” unsuc-
cessfully when applying the Copyright Act to the non-literal aspects of computer software.
Id.

896 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XV

software creates a “disequilibrium” of underprotection, thereby estab-
lishing a lack of incentive to create.®8 Although the courts are providing
an increasing amount of protection for the copying of software through
protection of the program’s non-literal8? structures,®® a consensus of
legal scholars contend that copyright law cannot protect the utilitarian
aspect of software from which computer software derives its value.®!
Protecting nonliteral elements through the a-f-c test conflicts with
the fair use of reverse engineering. Such is the case, because courts do
not have a definitive answer as to what nonliteral elements are pro-
tected, or whether these elements can be copied under reverse engineer-
ing.92 Nevertheless, this issue of reverse engineering and protection of
the nonliteral elements remains unsettled. Consequently, courts strug-

88. Slind-Flor, supra note 1, at A2. The computer industry is experiencing excellent
growth and profits; however, the potential profits that software companies could reap with
increased property protection makes the current profits seem minute in comparison. Slind-
Flor, supra note 1, at A2,

89. Altai, 982 F.2d at 702. Because the Copyright Act, 17 U.S.C. §101, protects non-
literal portions of literary works, and Courts hold that Congress intended computer pro-
grams to function as “literary work” for the purpose of the Copyright Act, therefore, the
Copyright Act protects the non-literal portions of computer programs. Id.

The courts decided that the following are not protectable under copyright law: Lotus
Dev. Corp., 788 F. Supp. at 89 (denying protection for menu command hierarchies); Apple
Computer, 799 F. Supp. at 1034 (denying protection for icons); Apple Computer, 799 F.
Supp. 1006, 1034 (N.D. Cal. 1992) (denying protection for use of windows to displays and
multiple images for user interaction); Apple Computer, 799 F. Supp. at 1035 (denying pro-
tection for use of menus to store information or computer functions); Apple Computer, 799
F. Supp. at 1035 (denying protection for opening and closing of objects as a means to store,
retrieve and transfer information); Engineering Dynamics, 26 F.3d at 1346 (denying protec-
tion for input/output formulas); Altai, 982 F.2d at 715 (denying protection for the underly-
ing code of screen displays).

90. See, e.g., Phoenix Controls, Inc. v. Phoenix Control Sys., 886 F.2d 1173, 1175 (9th
Cir. 1989); Digital Communications Assocs., Inc. v. Softklone Distrib. Corp., 659 F. Supp.
449, 455-56 (N.D. Ga. 1987); Q-Co Industries, Inc. v. Hoffman, 625 F. Supp. 608, 615
(S.D.N.Y. 1985); SAS Inst., Inc. v. S & H Computer Sys., Inc., 605 F. Supp. 816, 829-30
(M.D. Tenn. 1985).

91. See generally David Bender, Protection of Computer Programs: The Copyright/
Trade Secret Interface, 47 U. Prrt. L. REv. (1986) (comparing copyright to trade secret law
with regards to the protection provided under each); Menell, supra note 62, at 1054 (argu-
ing for application of copyright idea/expression merger doctrine to allow diffusion of scien-
tific ideas); Office of Technology Assessment, United States Congress, Finding a Balance:
Computer Software, Intellectual Property and the Challenge of Technology Change 5 (1992)
(noting the difficult questions in copyright case law concerns whether functionality, and not
just the code, is protected); Altai, 982 F.2d at 704-12 (“{Tlhe utilitarian nature of a com-
puter program . . . complicates the task of distilling its idea from its expression”); Lotus II,
788 F. Supp. at 91-92 (admitting the struggle to find copyright protection for the functional-
ity aspects of software).

92. Andre R. Jaglom, Current Developments in Copyright Protection of Computer
Software, CA63 ALI-ABA 603, 606 (1996). By protecting the nonliteral elements—the
“structure, sequence, and organization” of the program, a would-be reverse engineer cannot

1997] THE WEST GERMAN SMORGASBORD 897

gle in their attempt to separate the protected expressions from the non-
protected ideas,®3 resulting in continued inconsistencies®* with respect
to which test adequately separates the copyright-protectable expression
from the non-protectable idea.®5

B. Pros anp Cons oF PaTtenTs For CoMPUTER PrROGRAMS

1. The Positive Aspects of Patents for Software

With increased protection, the patent system promotes innovation
and the dissemination of technologies.?¢ The Patent Act requires a writ-

legally copy the program to reveal either the program’s “structure, sequence and organiza-
tion,” or the program’s ideas and functionality, not protectable under copyright. Id.

93. See supra notes 42-44 (describing the a-f-c test). In utilizing the above mentioned
a-f-c test in separating protectable elements from the nonprotectable, and literal elements
from nonliteral, the courts assume that they can separate the literal and nonliteral ele-
ments. See supra notes 42-44. Specifically, the courts assume that their “filter” is fine
enough to catch all of the protectable nonliteral elements. See supra notes 42-44 (describ-
ing the a-f-c test).

94. See, e.g., Whelan, 797 F.2d at 1236. The court used the following approach to sepa-
rate idea and expression:

[Tlhe purpose or function of a utilitarian work would be the work’s idea, and

everything that is not necessary to that purpose or function would be part of the

expression or idea [W]here there are various means of achieving the desired
purpose, then the particular means chosen is not necessary to the purpose; hence,
there is expression, not idea.

Id.

The Altai court notes a flaw in the Whelan court’s reasoning by noting that “. . . {Ilt
(the Whelan court) assumes that only one ‘idea,’ in copyright law terms, underlies any com-
puter program, and that once a separable idea can be identified, everything else must be
expression.” Altai, 982 F.2d at 705. Accordingly, the Altai court utilizes the classic ab-
straction-filtration-comparison method in an attempt to separate ideas from the expres-
sions. Id. The court quotes the CONTU report when it states,

Copyrighted language may be copyrighted without infringing when there is but a

limited number of ways to express a given idea [IIn the computer context, this

means that when specific instructions, even though previously copyrighted, are

the only and essential means of accomplishing a given task, their later use by

another will not amount to infringement.
See Miller, supra note 23, at 121.

The Engineering Dynamics court, on the other hand, examines many deviations of the
abstraction-filtration-comparison test and ultimately comes to the conclusion that the
“sweat of the brow” test and the Zack Meyer Originality test are applicable in addition to
the abstraction-filtration-comparison test followed by the Altai court. Engineering Dynam-
ics, 26 F.3d at 1341; see also Feist, 499 U.S. at 359; Donald v. Zack Meyer’s T.V. Sales and
Service, 426 F.2d 1027 (5th Cir. 1970).

95. Gary A. David, Lotus v. Borland: A Step Forward on ideas, A Step Back on Expres-
sion, 450 PLI/PaT 339, 369 (1996). Very few cases, if any, adequately draw the line be-
tween idea and expression utilizing any method or version of the a-f-¢c test. Id. The
Supreme Court’s non-decision in the Lotus I case did nothing for the resolution of the idea-
expression paradox, leaving more unanswered questions than it settled. Id.

96. Id. The irony of patent law in this particular instance is that a patent monopoly
actually increases competition. Id. With the reluctance of companies to send licensing

898 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XV

ten description of the potentially patentable invention.®7 This written
disclosure requires the best mode?8 of the invention, while enabling®®
others to recreate the invention. The written disclosure provision of the
Patent Act forces efficiency by requiring the “best mode” for practicing
the invention, while simultaneously stimulating further advances by en-
abling others to practice the invention.190 In return for this disclosure,
the patentee receives the right to exclude others from profiting from the
invention. Thus, the patent-granted monopoly of the invention creates a
figurative bargained-for-exchange: in exchange for an informative dis-
closure of an innovation, similar to the information gained through re-
verse engineering, the patent holder receives a monopoly and a right of
excludability.101

2. The Negative Aspects of Patents for Software

Traditionally, patents are unable to protect text or “printed matter”
and mental “processes,” thus, on their face patents appear incompatible
with computer programs.102 However, some courts apply a patent law
rationale to software, and as a result, realize the functionality aspect of
software.103 The valuable elements of a computer program, the behav-

checks to their respective competitors, competitors must “put forth their mightiest efforts
to produce a product as good, yet different from the patent-holder’s.” Id. at 1130. Antitrust
laws protect consumers and foster free competition; the patent laws must guarantee that
new entrants into the market are adequately protected to maintain efficient competition.
Id. at 1130-31.

97. 35 U.S.C. § 112 q 6 (1988).

98. 35 US.C. §112 q 1 (1988). See also supra note 59 (describing “best mode”
requirements).

99. Hayes, 982 F.2d at 1533-37. “Enablement” requires that a person of ordinary skill
in the respective field is able to recreate the invention via the written description. Id.

100. See Burke, supra note 12, at 1139 (noting that the best mode requirement requires
the applicant to “play fair and square” with the patent system).

101. Lawrence D. Graham & Richard O. Zerbe, Jr., Economically Efficient Treatment of
Computer Software: Reverse Engineering, Protection, and Disclosure, 22 Rurgers Com-
pPUTER & TecH. L.J. 61, 96 (1996). The article argues for the economically and socially
efficient free exchange of information that reverse engineering provides to the software
market. Id. The disclosure requirements of best mode and enablement in applying for a
patent provides the same effect of free-flow of information, while adequately compensating
the disclosure. Id. at 97. Therefore, disclosure in patent is analogous to reverse engineer-
ing in copyright, except that in copyright the use of the information gained through reverse
engineering is not compensated by monopoly excludability as in patent law. Id. at 98-99.

102. See, e.g., United States Patent and Trademark Office & United States Copyright
Office, Patent-Copyright Laws Querlap, Study 46 (1991). Printed matter is traditionally
the basis from which software is denied patent protection. See, e.g., In re Abrams, 188 F.2d
at 168 (holding that “calculating,” “measuring,” “observing,” and “comparing” data ele-
ments are unpatentable).

103. Alappat, 33 F.3d at 1544. Before the landmark Alappat holding, the legislature did
not consider mathematical algorithms patentable under 35 U.S.C. § 101 of the Patent Act.

1997] THE WEST GERMAN SMORGASBORD 899

ior, does not lend itself to patent protection: patents typically protect
particular methods of achieving results, not the results themselves.104
In other words, a patent holder with one method of generating certain
results could not prevent the use of another method to obtain the same
results or behavior.195 Nonetheless, the major problem involved in ap-
plying patent protection to software is that the innovations in the com-
puter industry, whether hardware, software, or semiconductors,196 are
incremental in nature.107

The system of patent law is designed to protect the innovations of a
substantial contribution to an industry or invention.108 Under the cur-
rent system, those companies that need the increased protection of pat-
ents either cannot afford the time and effort of obtaining a patent, or did
not make the requisite leap in innovation to warrant the issuing of a
patent.19® The lengthy and costly application process does not gener-
ously lend itself to the small software manufacturer.110 Therefore, the
small firm that the software patent was designed to protect cannot even
apply for a patent due the costly and inefficient application process.
Under the current system, the issuing of patents in an attempt to in-
crease the needed protection of computer software is like bringing a gar-

Now, when the courts consider software as an actual process controlling hardware, then
the software is patentable. Id. The software invention must be a part of the “specific
machine to produce a useful, concrete and tangible result,” as well as meet the statutory
novelty and non-obvious criteria. Id.

As early as 1976, the Supreme Court held that if the software process controlled a
physical operation or changed a state of matter, then the process is patentable. See gener-
ally Damn v. Johnston, 425 U.S. 219 (1976); Parker v. Flook, 437 U.S. 584 (1978); Diamond
v. Diehr, 450 U.S. 175 (1981).

104. Manifesto, supra note 6, at 2345.

105. Brian Kahin, The Software Patent Crisis, TEcH. REV., April 1990, at 53-58 (noting
that an attempt to patent the behavior of computer programs may provide too much
protection).

106. See 17 U.S.C. §§ 901-06 (1984) (describing the Semi-Conductor Chip Protection
Act).

107. See Manifesto, supra note 6, at 2346. The authors here demonstrate how the pat-
ent process, which is not suitable to semiconductors, requires the applicant to make an
inventive advance over the prior art. Id.

108. Manifesto, supra note 6, at 2346-47 (reiterating the resemblance of semiconductor
chip and software inventions patterns, and Congress’ need to provide the same protection
for software and semiconductors to dispel the uncertainty for the scope of protection
available).

109. See Note, supra note 18, at 1049 (blaming the inability of patent law to accommo-
date abstract invention, through legal protection that treats hardware, software, and algo-
rithms in radically different ways).

110. Burke, supra note 12, at 1124. The application process to obtain a patent for com-
puter software is difficult. Burke, supra note 12, at 1124. The burden of proof for showing
best mode and enablement, as well as the complete lack of prior art in the case of computer
programs makes the process unprofitable and too expensive for small firms. Burke, supra
note 12, at 1124,

900 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XV

den hose to put out a three-alarm fire: the hose may help a bit, but really
does nothing to solve the major problem.

C. A ProPOSAL

“The law must be stable, but it must not stand still.”111

Instead of attempting to pigeonhole computer software within the
purview of either patent or copyright protection, why not simply cut an-
other hole? “Hole cutters,” proposing a sui generis approach to software
protection, are met with well wishers!'2and nay-sayers alike.113 Con-
versely, the courts’ attempt to pigeonhole software into patent or copy-
right law creates confusion.114 The courts simply cannot apply century-
old copyright5 or patent!16 standards to a twentieth and twenty-first
century technology, while also leaving important software elements un-
protected.11? The pioneers of intellectual property protection never an-
ticipated encountering an animal with the voracity of software.

111. JonN BaArRTLETT, BARTLETT'S FAMILIAR QUOTATIONs 731 (15th ed. 1980) (quoting
Roscoe Pound, Introduction to the Philosophy of Law).

112. See, e.g., Robert A. Arean, A Proposal for the International Intellectual Property
Protection of Computer Software, 14 U. Pa. J. INT’L Bus. L. 213, 232-42 (1993) (arguing for
sui generis protection due to the shortcomings of copyright law); S. Carran Daughtrey, Re-
verse Engineering of Software for Interoperability and Analysis, 47 Vanp. L. Rev. 145, 183-
87 (1994) (discussing the shortcomings of copyright and the need for sui generis protection);
John C. Phillips, Sui Generis Intellectual Property Protection for Computer Software, 60
Geo. WasH. L. REv. 997, 1032-41 (1992) (arguing against the current copyright protection
in favor of a specific sui generis legislative scheme); and Manifesto, supra note 6 (advocat-
ing a market-reflective sui generis software protection scheme).

113. See, e.g., Jane C. Ginsburg, Four Reasons and a Paradox: The Manifest Superiority
of Copyright Over Sui Generis Protection of Computer Software, 94 CoLum. L. REv. 2559
(1994) (arguing that software protection is possible through the exclusive use of copyright
protection); David Abraham, Suggestions for Improved Intellectual Property Protection of
Software, Or Where is Alexander When You Really Need Him?, 23 S.U. L. Rev. 293, 305
(1995) (arguing that if the Patent Act, 35 U.S.C. § 101, was literally applied to software and
the algorithm restriction was lifted, there would be no need for increased or sui generis
protection).

114. See Altai, 982 F.2d 693, at 712. The Altai court explicitly states, “to be frank, the
exact contours of copyright protection for non-literal program structure are not completely
clear.” Id.

115. The courts still cite Baker v. Selden in an attempt to consider whether a particular
element of software should have patent or copyright protection. 101 U.S. 99 (1879).

116. Nichols v. Universal Pictures Corp., 45 F.2d 118 (2d Cir. 1930) (presenting the a-f-c
test for the first time).

117. The courts deciding software copyright cases utilize Judge Learned Hand’s ab-
straction-filtration-comparison test, or a derivation thereof, in a vein attempt to determine
how to copyright and protect computer software. The courts still appear to struggle with
the application of the a-f-c test to computer software. See supra notes 42-43 (defining the a-
f-c test).

1997] THE WEST GERMAN SMORGASBORD 901

1. The Current and Potential Configuration of the Software Industry

The computer industry understands the figurative and monetary
value of software. In doing so, the computer industry has shifted most of
its resources to the research, the production, and the marketing of
software.l18 The relatively new software patent increases the overall
value of computer software to the industry, encouraging innovation by
the “big three”1? and small businesses alike.120 This increased value of
software comes with a price in the form of decreased competition and
reduced entry in the software market.12! Thus, in order to protect the
software industry from becoming an air-tight oligopoly like the auto in-
dustry in the 1950’s,122 the law must provide greater protection for the
ideas and innovations of the smaller companies.123

2. Time is of the Essence

The fast pace of incremental innovations of the computer industry,
where any computer or piece of software purchased today is obsolete six
months later, dictates the need of protection that is flexible, short-lived,
high-powered, easily obtained, and quickly-implemented as soon as pos-

118. See Burke, supra note 12, at 1120. This great shift in the industry is mostly due to:
(1) the shift from mainframes and mid-range computers to micro-computers and worksta-
tions (due to the increased speed and technology of semiconductors); (2) the shift to open
systems from more profitable proprietary systems; (3) the increased commodization of
many products; and (4) the greater competition from foreign producers, especially those in
the Far East and Asia. Burke, supra note 12, at 1120. The software industry now has
more than twice the number of employees as the hardware industry. Burke, supra note 12,
at 1120.

119. See Lawrence M. Fisher, Novell to Acquire WordPerfect, N.Y. Times, Mar. 22, 1994
, at D1. Similar to the auto industry, the three software manufacturers of Microsoft, Lotus
and Novell, through recent takeovers, control 89% of the word processing market and 97%
of the spreadsheet market for personal computers. See also G. Pascal Zachary, Consolida-
tion Sweeps the Software Industry; Small Firms Imperiled, WALL St. J., Mar. 23, 1994, at
Al.

120. See Burke, supre note 12, at 1124.

121. Fisher, supra note 118. Fisher warns that the large computer firms, the “big three”
are slowly devouring the small software firms. Fisher, supra note 118. With the in-
creased protection afforded by the software patent, coupled with the ease of copying ideas
in the software industry and difficulty of small companies to obtain software patents, the
new patent is decreasing the competition of the market by closing it to small firms. Fisher,
supra note 118.

122. See Robert X. Cringely, If Novell is Ford and Lotus is Chrysler, Does That Make
Borland Hudson?, INFOWORLD, Mar 28, 1994 at 98 (comparing the market structure of
software industry and the auto industry). See also Apple Computer v. Microsoft, 799 F.
Supp 1006 (N.D. Cal. 1992), affd, 35 F.3d 1435 (9th Cir. 1994).

123. See Burke, supra note 12, at 1130-31 (noting that antitrust laws are in existence to
regulate any anti-competitive behavior, but patent law is needed to see that new entrants
in the market have protection of their innovations).

902 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XV

sible.12¢ One wonders why copyrights and patents provide protection to
a piece of software for seventy-five years125 and twenty years,126 respec-
tively, when the software in question is most likely out of date within
three to five years.127 Also, the amazing exponential growth of the com-
puter industry exposes a problem in our legal system, namely that the
effort needed to start the proverbial wheels of justice to turn may pale in
comparison to the rewards.128 Hence, any changes made to the current
system of patents must start now and the changes must incorporate a
vision toward the “future.”

3. The Smorgasbord Approach

Lawmakers and lawyers alike understandably despise any change
in the legal system because of the fear of the unknown, and the effort
required to familiarize themselves with new laws and the ramifications
thereof. To ease the lawyer’s pain and cost of learning a completely new
system, new software protection must take as much of the material and
policy from the positive aspects of the current law in a smorgasbord ap-
proach: take a little from everything, but only take what you like. Using
an economics rationale to decrease the “transaction costs”122 of imple-

124. See Cringley, supra note 121, at 98. In further comparing the software industry to
the auto industry, Cringley notes that the what took the auto industry 50 years to evolve,
the computer software industry did in ten. Cringley, supra note 121, at 98. Thus, if new
intellectual protection is not provided to spur and protect the innovation of the small firms,
the country must deal with a tight oligopoly, instead of an efficiently competitive market.
Cringley, supra note 121, at 99.

125. 17 U.S.C. § 102(a) (1988 & Supp. 1990).

126. 35 U.S.C. § 154(aX2) (1994). Congress and the Patent and Trademark Office just
increased the time period for patent protection from seventeen to twenty years. Compare
17 U.S.C. § 102(a) (1988 & Supp. 1990) with 35 U.S.C. § 154(aX2) (1994).

127. RoBeRrT L. MILGRM, MILGRIM OF LiCENSING § 5.00 at 5-7 (3rd ed. 1992) (stating
that the practitioner can safely assume that the subject matter protected will rapidly ex-
pand in any industry where electronics or computers play a role).

128. Congress took over twenty years to realize that the microchip deserves special pro-
tection because it is different from any other subject matter encountered in intellectual
property. See 17 U.S.C. §§ 901-06 (1984) (citing the Semi-Conductor Chip Protection Act).
Software and semiconductors demonstrated similar leaps in technology. Id.

129. RoperT CooTER & Thomas Ulen, Law and Economics 84 (2d ed., Addison-Wesley
1992). In economic terms, transaction costs are costs of exchange. Id. The effort of finding
a partner with whom to exchange, negotiating the exchange, enforcing the exchange, and
gaining the information to do each costs time, effort and money. Id. These costs of effort,
time and money in the exchange process are considered transaction costs. Id.

The landmark Coase theorem states that without these transaction costs impeding
efficient bargaining, two people will always bargain to an efficient end. Id. at 82. In the
system that the Manifesto or any sui generis proponent proposes, the cost of monitoring the
market and obtaining the information needed to implement their system is very great.
Manifesto, supra note 6, at 2401-15. Also, the costs of strategy with the onslaught of new
lawsuits under a new system, requiring more time for the attorney to learn and borne by

1997] THE WEST GERMAN SMORGASBORD 903

menting a new and unknown system into law, the new system should
utilize as many aspects relating to the current system as possible.130
Therefore, a new system must combine the slight scopel3! and ease of
obtainability!32 of a copyright with the increased protection and force of
efficiency under the “best mode”133 of a patent. The system should be
motivated toward protecting the valuable element of software, the be-
havior, and not the text or nonliteral elements!34 of the software.135

4. The West Germans Do It Better

The Federal Republic of Germany created a two-tiered system of
patents where major inventions and innovations receive full-term pat-
ents, while minor inventions receive petty patents, for a shorter
duration.136

the client, are detrimental for efficient bargaining under the Coase theorem. CooTER &
ULEN at 83.

The Coase theorem corollary underlines the need for efficient property rights. Id. at
82. The Coase Corollary states: “When transaction costs are high enough to prevent bar-
gaining, the efficient use of resources will depend upon how property rights are assigned.”
Id. In the reality of our litigious society, transaction costs are seldomly considered “low,”
even if utilizing a smorgasbord rationale to decrease the transaction costs of the legal sys-
tem. Ergo, according to the Coase corollary, implementing a system where property rights
provide an efficient outcome is essential to overall economic efficiency. Id.

130. See Kenneth W. Dam, Some Economic Considerations in the Intellectual Property
Protection of Software, 24 J. LEGgAL Stup. 321, 372 (1995) (noting that the major economic
problem with a sui generis approach to property rights has to do with the uncertainty,
requiring inefficient negotiation and litigation to completely define the new property
rights).

131. See Stern, supra note 80, at 1246-47 (noting the efficiently small scope of protection
that a copyright provides, in comparison to other forms of protection such as a patent or
trademark).

132. See Amin, supra note 82, at 22 (highlighting the cost of obtaining a software pat-
ent, in comparison to the dramatically lower cost of obtaining a copyright for software).

133. See Graham & Zerbe, supra note 100, at 96 (noting that the best mode disclosure,
as well as the enablement disclosure, provides the market place with an efficient free-flow
of information in order to build on previous innovations as quickly as possible).

134. See supra notes 42-43 (outlining the struggle to find an adequate system to sepa-
rate and protect the nonliteral elements of computer software).

135. The best and most far-reaching aspect of the Manifesto is the pinpointing of the
value-giving element of software, the behavior. See Manifesto, supra note 6, at 2379. The
Manifesto correctly realizes that lawmakers must stray from the various versions of the a-f-
c test and divide software into elements easily defined, elements which are based upon the
valuable behavior of the software. Manifesto, supra note 6, at 2420.

136. HErRMANN KINKELDEY & WILFRIED STOCKMAIR, THE NEW GERMAN PATENT Law 33
(Hermann Kinkeldey & Wilfried Stockmair, trans., Verlag Chemie 1981) (translating § 17
of the West German version of the Patent Act as it pertains to major and minor patents).

904 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XV

$
MSCmin =MSCmax
|
I MSBmax
I
|
|
|
! MSBmin :
0 | | t(Patent Life in Years)
t*min t*max

A multi-tiered system is more economically efficient than the cur-
rent United States patent system, especially for industries that tradi-
tionally innovate incrementally.137 By applying the German multi-

137. CooteR & ULEN, Law anp Economics 136 (1st ed., Harper Collins 1988). From an
economic standpoint, the social benefit conferred to the consumer by inventing the new
invention must take into account the value to society of the invention. Id. Likewise, this
invention must also adequately compensate through a social cost burdened to the consum-
ers who purchase this invention. Id. Without adequate competition, there is no incentive
for innovators to invent, decreasing the overall social value, technological level, and market
efficiency of the market. Id.

Under the current system, the social benefit of a twenty year software patent or a 75
year computer copyright is not high enough to justify the high social cost of withholding or
licensing this information or method to the rest of the computer industry. By decreasing
the time of protection provided to software, the social benefit will equal the social cost of the
invention. RoBERT D. CooTER & TrHoOMas S. ULEN, Law anD EcoNoMics ch. 5, at 20 (1994)
(unpublished manuscript, on file with author).

Assume, arguendo that in figure 1 above, the vertical x-axis is social cost in dollars and
the horizontal y-axis is the patent life in years, where t" e > 20 > t" 1. It follows that if two
inventions are given a 20-year patent, society will have given too much protection to the
minor improvement in technology and too little protection to the major invention. CooTeEr
& ULEN, supra note 128, at 123. This results in adverse social consequences. CooTer &
ULEN, supra note 128, at 123. For example, if the 17-year patent gives a greater return to
the minor improvement than the major invention, inventive sources may flow toward mi-
nor inventions and away from major inventions. CooTER & ULEN, supra note 128, at 124.

A single 20-year patent cannot balance the social benefits of inventive activity against
the social costs of limited access. COOTER & ULEN, supra note 128, at 124. Inthe case ofa
multi-tiered patent for software, there are six different levels of marginal social benefit
based upon six elements of software value. If graphically represented, the patent proposal
has six marginal social benefit (“MSB”) curves and accordingly six possible patent lives in
an attempt to best disperse the marginal social cost (“MSC”) of a patent monopoly to soci-
ety. Likewise, a multi-tiered system reduces the value of patent to the owner at a greater
rate than a single term patent system, thereby reducing the amount of resources devoted to
obtaining patents. RicHARD A. PosNER, EcoNomMic ANALysIS OF Law 39 (1992).

1997] THE WEST GERMAN SMORGASBORD 905

tiered system, graphically depicted above, to software, where the more
valuable elements of the software receive major patents and less valua-
ble elements of the software receive minor patents, the incremental inno-
vations in the software industry are efficiently protected.138

Instead of separating software into major and minor patents as in
Germany, the length and quality of the patent is dictated by the Mani-
festo’s separation of the various elements of software according their util-
itarian value.!3® For example, the industrial design of the program
behavior receives the patent for the longest duration (approximately ten
years)140 because, according to the Manifesto, this aspect of the program
is the most valuable.l4! Likewise, the algorithm of the computer pro-
gram receives the shortest duration (approximately one year)'42 of pat-
ent protection because, according to the Manifesto, the algorithm is the
least valuable element of the computer program.143

138. PosNER, supra note 136, at 39-40.

139. Manifesto, supra note 6, at 2379. The Manifesto divides software into five catego-
ries based upon functionality, marketability and valuable behavior: (1) program compila-
tions as a whole or industrial design of the program behavior; (2) subcompilations/subsets
of program behavior; (3) features as coherent units of program behavior; (4) program/object
code; and (5) algorithms. Manifesto, supra note 6, at 2379. These categories are in order
from most functional, useful, and valuable to least functional, useful, and valuable. Mani-
festo, supra note 6, at 2379

The Manifesto correctly observes that software manufacturers should have the means
to protect the behavior of software; and in doing so, divide software into various elements,
according to their respective behavior value and usefulness to the consumer. Manifesto,
supra note 6, at 2379. However, their market approach to protection appears untenable
because: (1) lawyers and legal scholars will meet any completely new sui generis means of
protection with the most resistance; (2) the market research and a priori approach that
they propose relies on economic and market structure information that is very costly or
impossible to obtain; and (8) even if the market information they require was available or
cost-efficient, the market for computer software and thus the law under their system
changes too quickly. See Coorer & ULEN, supra note 128, at 136-37.

140. The length of the various levels of patents requires some research into the social
cost and benefit of the computer software, similar to the economic analysis above. See
supra note 128. Regardless, the highest levels of protection cannot remain at the current
twenty year level due to the pace of overall technological improvement in the computer
industry.

141. The categories mentioned are in order of most to least valuable, and therefore in
order of patent strata level of longest duration to shortest duration. See supra note 138
(regarding the categories mandated by the Manifesto).

142. Manifesto, supra note 6, at 2379 (regarding the categories mandated by the Mani-
festo). The correct economic analysis must be used to obtain the optimum tenure for protec-
tion of all the strata of protection. See CooTER & ULEN, supra note 128, at 82.

143. Abraham, supra note 112, at 303. Some have concerns about the protecting of algo-
rithms by patent law. Abraham, supra note 112, at 303. Some argue that algorithms
should not even be protected at all, citing the traditional “law of nature” or mathematical
exception of patent law. Abraham, supra note 112, at 303. Abraham solves the problem of
indexing the prior art of algorithms by proposing a new system that indexes the algorithm
prior art according to general categories of operation. Abraham, supra note 112, at 304.

906 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XV

Furthermore, the scopel4* and ease of obtainability of the patent
varies with the respective length of the patent. 145 For example, the
standard of proof of novelty, usefulness, and non-obviousness for the one
year patent of an algorithm is minute in comparison to the standard for a
ten year patent on the industrial design of software. In addition, since
the proposed levels of patents are much shorter in duration, the patent
application process decreases with respect to time and expense.

5. The Advantages and Disadvantages of Other Sui Generis Theories

Other proponents of a sui generis revamping of the current protec-
tion system for software rely too heavily upon obtaining a priori market
and industry information, requiring a Ph.D. in economics to successfully
apply their respective approaches.146 Furthermore, most of the recent
proponents of sui generis protection for computer software agree that if
the new protection is to take place, the protection should be in the form
of a patent.147 Other proponents of new software protection believe that
the time allotted for intellectual property protection should be re-

Abraham also solves the problem of “holding up” the industry when one protects valuable
new algorithms when attempting to licensing it by arguing that the rest of market will
attempt to invent around the patented algorithm. Abraham, supra note 112, at 304. An-
other solution he proposes contends that cross-licensing of new technology would take place
during the wait between disclosure of the algorithm and the actual licensing of the al-
gorithm, Abraham, supra note 112, at 305.

144. Robert P. Merges & Richard R. Nelson, On the Complex Economics of Patent Scope,
90 Corum. L. REv. 839, 890-95 (1990). The article notes that an inventor experiences diffi-
culty in obtaining or granting a patent because of the vast and rigid scope of the current
patent law. Id. The authors argue that by decreasing the scope of the patent in proportion
to the importance of the invention, difficulty in obtaining a patent decreases and economic
efficiency increases. Id.

145, Id.

146. See, e.g., Manifesto, supra note 6. The Manifesto makes a valiant attempt at pure
market-oriented approach to software protection. However, the theory relies upon too
much information that is either impossible to obtain until all of the software takeovers
occurring in 1994 leave their effects; or too expensive and impractical to obtain. CooTER &
ULEN, supra note 136. Moreover, the intense economic policies within and surrounding the
Manifesto’s proposal would send all intellectual property attorneys back to school for addi-
tional economics classes. Dam, supra note 129, at 373.

147. See generally Graham & Zerbe, supra note 100 (arguing that increased protection
in patents and reverse engineering are economically efficient and that reverse engineering
can be accomplished within the structure of the Patent Act); Luettgen, supra note 7 (argu-
ing that the usefulness of the nonliteral aspects of computer software is not adequately
protected by copyright); Abraham, supra note 112 (using a literal interpretation of the pat-
ent act (35 U.S.C. § 101), he argues that patents can and should protect computer
software); Paley, supra note 30 (proposing to amend the current patent act to include algo-
rithms, thereby appending the Software Act to the Patent Act rather than the Copyright
Act).

1997] THE WEST GERMAN SMORGASBORD 907

duced.48 However, none combine the two notions, or propose protection
based upon a West German smorgasbord rationale.

Within the current system, utilizing the smorgasbord approach, the
high protection afforded by a patent appears to be the only means
software’s utilitarian value through which computer companies can effi-
ciently protect the valuable behavior and functionality of the
software.14® The proposed multi-tiered system provides a copyright-like
quality by limiting the scope of certain patents, thus easing the require-
ments to obtain a patent.150 The new system solves the paradox of the
Patent and Trademark Office related to prior art by allowing the office to
issue more patents. Also, the proposed system facilitates the efficient
free exchange of information by keeping the Patent Act’s section 112 dis-
closurel5! already embedded in the system.

IV. CONCLUSION

A multi-tiered system of patents is more efficient for both the econ-
omy and society.!52 The proposed multi-tiered patent system is not nec-
essarily sui generis because the efficiency gained through a multi-tiered
patent system is not limited to the computer software industry.15%3 An
excellent example of an industry that would greatly benefit from a multi-

148. Amin, supra note 82, at 24 (arguing that the scope of protection should be reduced
to one or two years); Douglas J. Masson, Note, Fixation on Fixation: Why Imposing Old
Copyright Law on New Technology Will Not Work, 71 IND. L.J. 1049 (1996) (arguing that an
author of a copyright protected work should have protection for an arbitrary amount of five
years).

149. Abraham, supra note 112, at 304. Abraham gives great deference to the Manifesto
because the Manifesto acknowledges the diversity of program and protects software by di-
viding software into five categories. Abraham, supra note 112, at 304. Abraham then ar-
gues that by literally interpreting the Patent Act of 35 U.S.C. § 101, the algorithm
exclusion of the Patent Act will be abolished. Abraham, supra note 112, at 305. This abol-
ishment, argues Abraham, can adequately protect computer software. Abraham, supra
note 112, at 305. However, Abraham’s plan does not solve the shortcomings of patents,
namely in the fast-moving field of computers, the difficulty and the high cost of obtaining a
patent, which prices the small firms out of the market. Abraham, supra note 112, at 305.

150. If a patent is for a shorter duration, the PTO is less concerned and therefore less
restrictive with the novel, non-obvious, useful and best mode requirements. See Stern,
supra notes 80 and 130 (noting that the wide scope of patents causes conservative issuing
of patents by the PTO). Under the current system, these requirements are strictly adhered
to, which denies protection to small firms. See supra note 93 and accompanying text (reit-
erating the strict standards for obtaining patent protection in regards to software).

151. See supra note 56 (describing disclosure requirements and enablement guidelines
for software patents).

152. See supra note 127 (explaining the greater efficiency of a multi-tiered patent sys-
tem over the current single-tiered patent system).

153. The two-tiered system in West Germany is applied to any invention that qualifies
for a patent. CooTER & ULEN, supra note 136, at 136.

908 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XV

tiered patent system is the drug manufacturing industry.15¢ Any indus-
try that produces patentable products where the innovation is research-
intensive and incremental in nature, like the software industry, benefits
economically from a multi-tiered system.155

Obviously, the current patent system cannot adequately protect the
functionality and behavior of software.156 In attempting to perform the
much-needed revamping of the current intellectual property system, any
new or sui generis proposal must utilize as much legal theory and policy
from the current system as possible. This “smorgasbord” approach to in-
tellectual property reform eases the difficulty of learning and implement-
ing a completely new system, thereby decreasing transaction and
retraining costs.157 Because the minor patents in the multi-tiered sys-
tem are easier to receive and cost less to obtain, small firms, previously
unable to compete in the software market, can now compete. The imple-
mentation of a multi-tiered patent system increases the overall efficiency
of virtually any market that the lawmakers deem applicable. In the face
of competitive market destruction, the lawmakers must force the law to
keep pace with technology.

Larry N. Woodard

154. Burke, supra note 12, at 1129. The current patent system innately spurs innova-
tion and dissemination of new technologies by granting property rights to original inven-
tors. Burke, supra note 12, at 1129. U.S. drug companies spend billions on research and
development, and once the drug is discovered and marketed, the drug can be copied at little
cost. Burke, supra note 12, at 1129. Moreover, the drug industry rarely makes quantum
leaps in innovation, but rather small steps. Burke, supra note 12, at 1129. A multi-tiered
system can spur innovation by increasing protection for those easily copied elements of a
small step in innovation that would otherwise not hold a patent. Burke, supra note 12, at
1129. See also Merges & Nelson, supra note 143, at 847 (showing the difficulty that the
drug industry undergoes in obtaining patents for incremental innovations).

155. Any industry that invests heavily in research and development and innovates with
small steps instead of large leaps has the same economic analysis as the software industry.
See supra notes 127-28 (describing software industry multi-tiered economic analysis).

156. See supra notes 125-27 and accompanying text (proving that the current patent
system cannot protect software behavior).

157. Recall, that economic efficiency increases and rational people tend to negotiate to
efficient outcomes as the transaction costs decrease. See supra note 128 (defining the Coase
theorem and transaction costs).

	The West German Smorgasbord Approach to Intellectual Property Protection of Computer Software, 15 J. Marshall J. Computer & Info. L. 883 (1997)
	Recommended Citation

	West German Smorgasbord Approach to Intellectual Property Protection of Computer Software, The

