
THE JOHN MARSHALL
REVIEW OF INTELLECTUAL PROPERTY LAW

OPEN SOURCE PARADIGM: BEYOND THE SOLUTION TO THE SOFTWARE

PATENTABILITY DEBATE

GIOVANNA MASSAROTTO

ABSTRACT

Around 300 BCE, a Greek mathematician, Euclid discovered a theorem on which
modern geometry and a fundamental algorithm is based. Euclid’s theorem
represents a method for calculating the greatest common divisors between two
integers. Since 300 BCE, both Euclid’s Theorem and algorithm have been applied in
many fields, including algebra and geometry. But what would have happened if
Euclid’s Theorem had been patented? The issue is not whether we can continue to
use Euclid’s Theorem without paying royalties, but if software and algorithms
underlying the software are patentable. Although software is based on algorithms
similar to the algorithm discovered by Euclid, in the United States software is
generally patented.

Open source paradigm, explored here, could resolve the software patentability
issue, in addition to representing the best economic/social paradigm to apply in the
technology industry. Android, Google’s open source operating system, for example, is
installed in more than eighty percent of worldwide smartphones, showing that open
source strategy is workable. The Web, developed by Tim Berners-Lee, is another of
these examples. If the Web had been patented, innovation and the development of
technology would inevitably have been compromised. Instead of patent protection,
the United States legislature could guarantee software an adequate legal protection
through copyrights.

Copyright © 2016 The John Marshall Law School

Cite as Giovanna Massarotto, Open Source Paradigm: Beyond the Solution to the
Software Patentability Debate, 15 J. MARSHALL REV. INTELL. PROP. L. 647 (2016).

647

OPEN SOURCE PARADIGM: BEYOND THE SOLUTION TO THE SOFTWARE
PATENTABILITY DEBATE

GIOVANNA MASSAROTTO

I. INTRODUCTION... 648
II. US PATENT LAW AND THE SOFTWARE PATENTABILITY DEBATE 649

A. The Supreme Court Decisions on Software Patentability 650
1. Gottschalk v. Benson (1972) .. 651
2. Parker v. Flook (1978) ... 651
3. Diamond v. Diehr (1981) ... 652
4. Bilski v. Kappos (2010) .. 653
5. Mayo v. Prometheus (2012) ... 653
6. Summary of the U.S. Case Law on Software Patentability 654

B. Supreme Court—Certiorari—Alice Corp. v. CLS Bank Int’l.......................... 654
C. Patent Trolls and Patent Privateering Phenomena 656

III. COMPUTER SCIENTISTS AND THE STUDY OF COMPUTER LANGUAGE 657
A. What Computer Scientists think about Software Patentability? 658

1. The “Father” of Analysis of Algorithms—Prof. Donald Knuth 658
2. The Founder of the Free Software Foundation—Richard M. Stallman . 658
3. The Founder of Linux Operating System—Linus Torvalds 659
4. The Father of the Web—Tim Berners-Lee ... 659

B. What If the Web Had Been Patented? The Microsoft Network 659
C. What does Computer Language Mean? Noam Chomsky and the

Hierarchy of Grammars ... 662
IV. OPEN SOURCE SOFTWARE AND OPEN SOURCE LICENSE ... 664

A. Open Source Licenses: GPL—LGPL—Creative Commons 665
1. GPL ... 665
2. LGPL ... 667
3. Creative Commons ... 667

B. Motivations for Contributing to Open Source Software 668
C. Vertical Integration v. Open Source Licensing – Android Case 670

V. COPYRIGHT AND OPEN SOURCE .. 671
A. Patent and Copyright Protection in Comparison .. 671

1. Copyright Protection v. Patent Protection ... 672
2. Patent and Copyright in the Software Context 672
3. Software Copyright—Jacobsen Case .. 673

VI. FINAL CONSIDERATIONS—WHY OPEN SOURCE PARADIGM? 674

[15:647 2016] The John Marshall Review of Intellectual Property Law 648

OPEN SOURCE PARADIGM: BEYOND THE SOLUTION TO THE SOFTWARE
PATENTABILITY DEBATE

GIOVANNA MASSAROTTO*

I. INTRODUCTION

In 2016, innovation is the key motor of economic growth. Maintaining
competition and economic incentives for companies to invest in new technologies is
fundamental to preserve innovation. Historically, patent law and antitrust law
conflict in protecting competition and maintaining economic incentives to innovate.1
While patent law grants to the patent holder the right to exclude, essentially a legal
monopoly of the invention,2 antitrust law prohibits monopolistic behavior.3

Thus, the big challenge for both antitrust and patent law is to find an efficient
compromise. To resolve this conflict, regulators must fully understand the specific
circumstances and needs of each industry’s market. A recent issue exemplifying the
tension between antitrust and patent law is the patentability of software. In the
United States, software is patented, while generally in Europe4 and other countries,
such as New Zealand,5 it is not. On December 6, 2013, the U.S. Supreme Court
granted certiorari in a case that questioned the patentability of a software method
and system.

My analysis starts with the current issue debated by the U.S. Supreme Court on
software patentability. Then, I examine the subjects of open source software and
open source licenses, which conflict with the theory of patent law. The open source
movement supports the use of open source licenses for some or all software,6 while

* © Giovanna Massarotto 2016. Academic Visitor at the University of Oxford, Oxford; Of

Counsel Massarotto & Associati, Treviso, giovanna@massarotto.com. I would like to thank
Professor Mark Patterson and Andrea Lively for their extremely helpful comments. This paper has
been selected for the Eleventh Annual Conference organized by SIDE (Italian Society of Law &
Economics)—Naples, Italy (18 December 2015).

1 See, e.g., Michael A. Carrier, Resolving the Patent-Antitrust Paradox Through Tripartite
Innovation, 56 VAND. L. REV. 1047 (2003).

2 35 U.S.C. § 154. See, e.g., Greg Lastowka, Inovative Copyright, 109 MICH. L. REV. 1011, 1012
(2011).

3 Sherman Antitrust Act, 15 U.S.C. § 2 (1890).
4 In 2005, the European Parliament rejected legislation to allow software patents. Article 52 of

the European Patent Convention specifies that “programs for computers” are not patentable.
Administrative Council of the European Patent Organization, The European Patent Convention,
O.J. EPO 2001, (June 28, 2001), available at http://www.epo.org/law-practice/legal-
texts/html/epc/2013/e/ar52.html.

5 In 2013, New Zealand passed legislation to ban software patents. New Zealand, Patent Act,
n. 68 (2013) http://www.legislation.govt.nz/act/public/2013/0068/latest/DLM1419043.html.

6 See, e.g., Katherine Noyes, GNU GPL Creator Richard Stallman on the Meaning of ‘Free’,
LINUXINSIDER, (Oct. 15, 2007), http://www.linuxinsider.com/story/59780.html; David McGowan,
Legal Implications of Opensource Software, 2001 U. ILL. L. REV. 241 (2001). “Unlike the traditional
producers of computer software—Microsoft, for example—open-source software is often developed by
computer programmers from all over the world, each submitting contributions to the code, and
distributed without charge or for a minimal fee.” Id.

[15:647 2016] Open Source Paradigm: 649
 Beyond the Solution to the Software Patentability Debate

other technology corporations, such as Microsoft and Apple, are more in favor of
patenting software and protecting patent law.

Specifically, in Part II I discuss the most relevant U.S. case law and the recent
Supreme Court case, Alice Corp. v. CLS Bank Int’l.,7 on the patentability of software.
In Part III, I analyze the thoughts of the current most influential computer scientists
on the software patentability debate. To support the fact that software is not eligible
for patent protection, I also discuss how Professor Noam Chomsky explained
languages and how it relates to the underlying programming language of software.

In Part IV, I examine the implication of open source licensing and clarify the
economic incentives to invest in open source software. Finally, in Part V, I identify
copyright as the best legal protection for software.

Reflecting on similar issues is fundamental to helping lawmakers and courts
promote competition and technological innovation. The common goal is to identify
and implement the most appropriate and efficient economic/social paradigm.
Perhaps such a standard could be identified in a regulated open source paradigm.

II. US PATENT LAW AND THE SOFTWARE PATENTABILITY DEBATE

In 2005, the European Parliament rejected the law that would have allowed
software patents.8 In contrast, over the past twenty years the intellectual property
rights regime in the U.S. has significantly changed. Between 1972 and 1981, three
Supreme Court decisions identified strict limits on patenting software. However, in
1982 around 1,200 software patents were granted; today the annual average is
around 40,000 software patents.9

Generally, the U.S. did not have strict criteria for patents, which allowed people
to patent, among other items, software and business models.10 The U.S.’s decision to
relax the patent criteria seems to stem from increasing foreign competition.11

Further, in 1982 Congress stated that the Federal Circuit Court of Appeals had
jurisdiction over all appeals in patent lawsuits to unify the application of patent
law.12 The Federal Circuit soon became the specialized court for patent law taking

7 Alice Corp. v. CLS Bank Int’l., 134 S. Ct. 2347 (2014).
8 European Parliament sends software patent packing, (Jul. 19, 2005)

http://ec.europa.eu/research/infocentre/article_en.cfm?id=/research/headlines/news/article_05_07_20
_en.html&item=&artid=.

9 Richard Wolf, Supreme Court sets strict standard for computer patents, USA TODAY, (Jun. 19,
2014), http://www.usatoday.com/story/money/business/2014/06/19/supreme-court-computer-
patent/9190199/.

10 See, e.g., Carl Shapiro, Patent System Reform: Economic Analysis and Critique, 19 BERKELEY
TECH. L. J. 1017 (“[c]omplaints regarding the patent system typically allege that the U.S. Patent
and Trademark Office (USPTO) issues many questionable patents, for example, patents that are
likely to be invalid or contain over broad claims”).

11 Benjamin Coriat & Fabienne Orsi, Establishing a New Intellectual Property Rights Regime in
the United States: Origins, Content and Problems, 31 RES. POL’Y 1491 (2002).

12 See, e.g., Meredith Martin Addy, Is the Federal Circuit Ready to Accept Plenary Authority for
Patent Appeals?, 4 J. MARSHALL REV. INTELL. PROP. L. 583 (2005); Rochelle Cooper Dreyfuss, The
Federal Circuit: a Case Study in Specialized Courts, 64 N.Y.U. L. REV. 1 (1989); Timothy B. Lee,
Everything you need to know about patents, VOX, (Oct. 7, 2014) available at
http://www.vox.com/cards/patent-reform.

[15:647 2016] The John Marshall Review of Intellectual Property Law 650

the role previously covered by the U.S. Court of Customs and Patent Appeals
(“CCPA”). The Federal Circuit had to follow the precedents of the CCPA in applying
patent law.13

The new role covered by the Federal Circuit Court of Appeals was not without
criticism. In 2003, the Federal Trade Commission issued the report To Promote
Innovation: the Proper Balance of Competition and Patent Law and Policy,14
criticizing the “pro-patent stance” of the Federal Circuit.15 The Federal Trade
Commission noted that in the software industry “firms can require access to dozens,
hundreds, or even thousands of patents to produce just one commercial product.”16
In 1981, the Supreme Court remarked in Diamond v. Diehr, et al.17 that the only
categories not patentable are “laws of nature, natural phenomena, and abstract
ideas.”18 In 2012, the Federal Circuit Court of Appeals in CLS Bank Int’l v. Alice
Corp. made the same statement supporting the patentability of Alice’s invention.19
Then, the Federal Circuit granted a petition for rehearing en banc and affirmed the
District Court’s judgment recognizing that Alice’s invention was patent-ineligible.20
The invention concerned a computerized trading platform that serves to conduct
financial transactions where a third party negotiates obligations between a first and
a second party to eliminate the settlement risk.21

Thus, important questions to ask are: When is software eligible for patenting?
What are the standards for patenting software?

A. The Supreme Court Decisions on Software Patentability

Although a majority of the judges on the Federal Circuit agree that method
claims do not recite patent-eligible subject matter, no majority of those judges agree
as to the legal rationale for that conclusion.22

This is what Chief Judge Rader observed in CLS Bank, commenting on the lack
of clarity in software patentability. As the following Supreme Court decisions reveal,
the issue of whether software is patent-eligible is not definitively determined. The

13 Addy, supra note 12, at 583.
14 FEDERAL TRADE COMMISSION, TO PROMOTE INNOVATION: THE PROPER BALANCE OF

COMPETITION AND PATENT LAW AND POLICY, A REPORT BY THE FEDERAL TRADE COMMISSION (2003),
available at http://www.ftc.gov/sites/default/files/documents/reports/promote-innovation-proper-
balance-competition-and-patent-law-and-policy/innovationrpt.pdf.

15 Id. See also Thomas P. Burke, Software Patent Protection: Debugging the Current System, 69
NOTRE DAME L. REV. 1115, 1132 (1994) (“[f]rom 1982 to 1992, there were one hundred and fifty-two
reported patent infringement cases with damage awards totaling $1.73 billion”).

16 FEDERAL TRADE COMMISSION, supra note 14, at 32.
17 450 U.S. 175 (1981).
18 Id. at 185.
19 CLS Bank Int’l v. Alice Corp., 685 F.3d 1341, 1352 (Fed. Cir. 2012), vacated, 484 F. App’x 559

(Fed. Cir. 2012).
20 CLS Bank Int’l v. Alice Corp., 717 F. 3d 1269, 1274 (Fed. Cir. 2013). See also, Alice Corp. v.

CLS Bank Int’l, 134 S. Ct. 2347, 2353 (2014).
21 CLS Bank, 685 F.3d at 1341.
22 CLS Bank, 717 F.3d at 1292 n.1 (Fed. Cir. 2013) (Rader, C.J., concurring in part and

dissenting in part), cert. granted, 134 S. Ct. 734 (2013).

[15:647 2016] Open Source Paradigm: 651
 Beyond the Solution to the Software Patentability Debate

latest Supreme Court decision on this topic, again, did not resolve the issue by taking
a clear position.

1. Gottschalk v. Benson (1972)

In 1972, the Supreme Court decided on the patentability of a method for
converting binary-coded decimal (“BCD”) numerals into pure binary numerals—
namely an algorithm. The claims purported “to cover any use of the claimed
method”23 without being limited to any art or technology, apparatus or machinery, or
particular end use.24

Although both the U.S. Patent and Trademark Office and the Board of Patent
Appeals and Interferences rejected the patent application, the CCPA reversed the
rejection. In reply to the CCPA’s decision, the Commissioner of Patent and
Trademark decided to file a petition for writ of certiorari to determine whether the
claim presented patentable subject matter under § 101.25

The Supreme Court recognized that “[a] procedure for solving a given type of
mathematical problem is known as an ‘algorithm,’” and that “[t]he procedures set
forth in the present claims are of that kind.” In other words, these procedures
represent a useful generalized formulation used for resolving mathematical problems
of converting one form of numerical representation to another by programs.26

Thus, the Supreme Court concluded that the case at hand involved a
mathematical formula and if the judgment of the CCPA, that embraced the claim,
were affirmed, “the patent would wholly pre-empt the mathematical formula and in
practical effect would be a patent on the algorithm itself.”27

Therefore, the Supreme Court reversed the CCPA’s judgment and rejected the
proposal that such programs were patentable.

2. Parker v. Flook (1978)

The patent in this suit claimed a method “for Updating Alarm Limits,” where
the only new element was the applied mathematical formula.28 According to the
Court, “[t]he only difference between the conventional methods of changing alarm
limits and that described in respondent’s application rest[ed] in the second step—the
mathematical algorithm or formula.” Similar to Gottschalk, the patent examiner and
the Board of Patent Appeals and Interferences rejected the patent application,29
while the CCPA reversed their previous decisions.30

23 Gottschalk v. Benson, 409 U.S. 63, 64 (1972).
24 Id.
25 35 U.S.C. § 101. “[W]hoever invents or discovers any new and useful process, machine,

manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a
patent therefor, subject to the conditions and requirements of this title.” Id.

26 Id.
27 Id. at 72.
28 Parker v. Flook, 437 U.S. 584, 585 (1978).
29 Id. at 587.
30 Id.

[15:647 2016] The John Marshall Review of Intellectual Property Law 652

The Supreme Court, in deciding on the patentability of this method, used the
same analysis adopted in the Mackay Radio & Telegraph Co, Inc. v. Radio Corp. of
Am.31 and Funk Bros. Seed Co. v. Kalo Inoculant Co.32. The Court recognized that
“[w]hether the algorithm was . . . known or unknown at the time of the claimed
invention, as one of the ‘basic tools of scientific and technological work,’ . . . it is
treated as though it were a familiar part of the prior art.”33 This is the same reason
why the Court rejected “Samuel Morse’s broad claim covering any use of
electromagnetism for printing intelligible signs, characters, or letters at a
distance.”34

In sum, the Supreme Court again reversed the CCPA’s judgment because the
claim at hand simply provided a formula for computing an updated alarm limit, it
was ineligible for patenting.35

3. Diamond v. Diehr (1981)

In 1981, the Supreme Court granted certiorari to decide whether “a process for
curing synthetic rubber which includes in several of its steps the use of a
mathematical formula and a programmed digital computer is patentable subject
matter under 35 U.S.C. § 101.”36 The Supreme Court observed that, unlike Benson
and Parker, the respondents do not seek to patent a mathematical formula but seek
patent protection for a process of curing synthetic rubber.37 Specifically, the claimed
invention concerned “a process for molding raw, uncured synthetic rubber into cured
precision products.”38

Because “a physical and chemical process for molding precision synthetic rubber
products falls within the § 101 categories of possibly patentable subject matter,”39 the
Supreme Court recognized the patentability of the claims. In particular, the
Supreme Court recognized that “[i]n determining the eligibility of respondents’
claimed process for patent protection under § 101, their claims must be considered as
a whole.”40 In a process claim this is particularly true. The Supreme Court specified
that, although all the constituents of the combination in a process were well known
and in common use before the combination was made, a new combination of process
steps “may be patentable.”41 By doing so, the Supreme Court alleged an important
principle: a process that includes mathematical formulae and a programmed digital
computer may be patent-eligible.

31 Mackay Radio & Telegraph Co., Inc. v. Radio Corp. of Am., 59 S. Ct. 427 (1939).
32 Funk Bros. Seed Co. v. Kalo Inoculant Co., 333 U.S. 127 (1948).
33 Parker, 437 U.S. at 592.
34 Id.
35 Id. at 594-96.
36 Diamond v. Diehr, 450 U.S. 175, 177 (1981).
37 Id. at 187.
38 Id. at 177.
39 Id. at 184.
40 Id. at 189.
41 Id.

[15:647 2016] Open Source Paradigm: 653
 Beyond the Solution to the Software Patentability Debate

4. Bilski v. Kappos (2010)

Here, the claimed invention concerned “a procedure for instructing buyers and
sellers how to protect against the risk of price fluctuations in a discrete section of the
economy.”42 The issue at hand turned on “whether a patent can be issued for a
claimed invention designed for the business world.”43

The Supreme Court recognized that the Federal Circuit Court of Appeals
incorrectly alleged that this Court has endorsed the machine-or-transformation test
as exclusive.44 According to the Supreme Court, the machine-or-transformation test
represents only an important clue in deciding whether some claimed inventions are
processes under § 101.45 A business method like the one here, however, might be
patentable. Specifically, the Supreme Court recognized that “the Patent Act leaves
open the possibility that there are at least some processes that can be fairly described
as business methods that are patentable subject matter under § 101.”46 In this case,
however, the claimed business methods were not patentable and “the patent
application has been rejected under [the] Supreme Court’s precedent on the
un-patentability of abstract ideas.”47

5. Mayo v. Prometheus (2012)

Although the Supreme Court has attempted to provide guidance on software
patentability, in cases that concern this issue, courts engage in a difficult process of
deciding whether a claim presents patentable subject matter under § 101.48 In Mayo
v. Prometheus,49 the Supreme Court decided whether a diagnostic test was patent
eligible.

Prometheus Laboratories Inc. (“Prometheus”) sold diagnostic tests, which
included some patented processes. Mayo Clinic Rochester and Mayo Collaborative
Services (collectively “Mayo”) bought and employed those tests, but Mayo decided to
use its own test in 2004. Prometheus sued Mayo for patent infringement and Mayo
counterclaimed that Prometheus’ patents were invalid because they effectively claim
natural law or phenomena.50 Specifically, the claims involved “the precise
correlations between metabolite levels and likely harm or ineffectiveness.” 51

The district court recognized that because Prometheus’ patents claimed natural
phenomena and natural law they were not patent-eligible.52 Prometheus appealed
the decision. Despite the Federal Circuit’s reversal of the district court’s decision, the

42 Bilski v. Kappos, 130 S. Ct. 3218, 3223 (2010).
43 Id.
44 Id. at 3227.
45 Id. at 3226.
46 Id. at 3229.
47 Id. at 3231.
48 Dennis Crouch & Robert P. Merges, Operating Efficiently Post-Bilski by Ordering Patent

Doctrine Decision-Making, 25 BERKELEY TECH. L. J. 1673 (2010).
49 Mayo Collaborative v. Prometheus Labs., 132 S. Ct. 1289 (2012).
50 Id. at 1296.
51 Id. at 1295.
52 Id. at 1296.

[15:647 2016] The John Marshall Review of Intellectual Property Law 654

Supreme Court concluded that “the steps in the claimed processes (apart from the
natural laws themselves) involve well-understood, routine, conversational activity
previously engaged in by researchers in the field” and that “the claims [were]
consequently invalid.”53

6. Summary of the U.S. Case Law on Software Patentability

In sum, over the last forty years the Supreme Court has recognized that: (a) the
only categories not patentable are “laws of nature, natural phenomena, and abstract
ideas;”54 (b) because an algorithm is based on a mathematical formula, algorithms
are not patent-eligible; and (c) a new combination of process steps may be patentable
although all the elements of a combination in a process were well known before the
combination was made.55

However, despite the number of Supreme Court rulings on software
patentability, the underlying issue is not yet resolved. In 2013, the software
patentability debate reappeared before the Supreme Court in Alice Corp. v. Cls Bank
Int’l. Further, each year, the U.S. Patent and Trademark Office grants an average of
approximately 40,000 software patents.56 At this point, we must ask from whence
the confusion comes: is the Supreme Court unclear in defining software patentability
criteria; or are the activities of the U.S. Patent and Trademark Office inconsistent
with Supreme Court case law? Whatever the response, the law must be clear and
public enforcers must be held to application of legal provisions and principles; not
broad use of discretion.

B. Supreme Court—Certiorari—Alice Corp. v. CLS Bank Int’l

On December 6, 2013, the U.S. Supreme Court granted certiorari in Alice Corp.
v. CLS Bank Int’l.57 The question posed by Alice, the patent owner, was:

Whether claims to computer-implemented inventions—including
claims to systems and machines, processes, and items of
manufacture—are directed to patent-eligible subject matter within
the meaning of 35 U.S.C. § 101 as interpreted by this Court?58

53 Id. at 1305.
54 Diamond, 450 U.S. at 185.
55 Id.
56 See, e.g., Brian J. Love, Requests For Comments on Enhancing Patent Quality, 2 n.5 (May 6,

2015) http://digitalcommons.law.scu.edu/cgi/viewcontent.cgi?article=1883&context=facpubs (citing
Christina Mulligan & Timothy B. Lee, Scaling the Patent System, N.Y.U. ANN. SURV. AM. L. 289
(2012).

57 CLS Bank, 717 F.3d at 1292 n.1 (Rader, C.J., concurring in part and dissenting in part), cert.
granted, 134 S. Ct. 734 (2013).

58 Brief for Petitioner at (i), Alice Corp. v. CLS Bank Int’l, 134 S. Ct. 2347 (2013) (No. 13-298),
2014 WL 262088.

[15:647 2016] Open Source Paradigm: 655
 Beyond the Solution to the Software Patentability Debate

In other words, the Supreme Court was questioned on the patent-eligibility of
some kinds of software. In this case, Alice Corp. Pty. (“Alice”) owned patents related
to “the management of risk relating to specified, yet unknown, future events.”59
Specifically, the patents in this suit concerned a computerized trading platform that
serves to conduct financial transactions where a third party negotiates obligations
between a first and a second party to eliminate the settlement risk (‘479, ‘510, and
‘720 patents).

On May 24, 2007, CLS Bank (“CLS”), a bank that developed software for its own
use, filed a suit against Alice seeking a declaratory judgment of non-infringement,
invalidity, and unenforceability as to the ‘479, ‘510, and ‘720 patents. According to
CLS, Alice’s patents were ineligible because they merely recited abstract ideas
concerning some fundamental economic concepts. In response, Alice counterclaimed
alleging that CLS infringed its patents.

While the district court held that the claims at issue were invalid under § 101,
on July 9, 2012 the Court of Appeals for the Federal Circuit recognized that the
asserted claims of Alice’s patents were all patent-eligible under § 101.60 According to
the district court, the claims at issue “would preempt the use of the abstract concept
of employing a neutral intermediary to facilitate simultaneous exchange of
obligations in order to minimize risk on any computer, which is, as a practical
matter, how these processes are likely to be applied.”61

Conversely, the Federal Circuit, reversing the district court’s judgment, argued
that the claims at issue were not “mere ‘abstract ideas’ but rather [were] directed to
practical applications of invention falling within the categories of patent-eligible
subject matter defined by 35 U.S.C. § 101.”62

Nevertheless, in October 2012, the Court of Appeals for the Federal Circuit
granted a petition for rehearing en banc filed by CLS.63 This time, the Federal
Circuit agreed with the district court’s judgment recognizing that “the asserted
method, computer-readable medium, and system claims of Alice’s ‘479, 510’, ‘720, and
‘375 patents [were] invalid under § 101 for failure to recite patent-eligible subject
matter.”64

The Federal Circuit summarized the steps of patent-eligibility analysis as
follows. First, we should ask “whether the claimed invention is a process, machine,
manufacture, or composition of matter”65 and “[i]f not, the claim is ineligible under
§ 101.”66 Second, “[i]f the invention falls within one of the statutory categories, we
must then determine whether any of the three judicial exceptions nonetheless bars
such a claim—is the claim drawn to a patenting-eligible law of nature, natural

59 Alice, 134 S. Ct. at 2352.
60 CLS Bank Int’l v. Alice Corp., 685 F.3d 1341, 1352 (Fed. Cir. 2012), vacated, 484 F. App’x 559

(Fed. Cir. 2012).
61 CLS Bank Int’l v. Alice Corp., 768 F.Supp.2d 221, 252 (D.C. Cir. 2011).
62 CLS Bank, 685 F.3d at 1343.
63 CLS Bank, 484 Fed. Appx. 559 (Fed. Cir. 2012); see FED. R. APP. P. 35(a) (“When Hearing or

Rehearing En Banc May Be Ordered. A majority of the circuit judges who are in regular active
service and who are not disqualified may order that an appeal or other proceeding be heard or
reheard by the court of appeals en banc.”)

64 CLS Bank, 717 F. 3d at 1292 (Fed. Cir. 2013).
65 Id. at 1277.
66 Id.

[15:647 2016] The John Marshall Review of Intellectual Property Law 656

phenomenon, or abstract idea?” And, “[i]f so, the claim is not patent-eligible. Only
claims that pass both inquiries satisfy § 101.”67

The Supreme Court affirmed the Court of Appeal’s ruling concluding that
“[b]ecause [Alice]’s system and media claims add nothing of substance to the
underlying abstract idea, [the Supreme Court held] that they too are
patent-ineligible under § 101.”68

Although Alice’s question concerned whether all claims to
computer-implemented inventions were patent-eligible, the Supreme Court’s decision
did not answer it. The Supreme Court only decided whether Alice’s
computer-implemented invention was patent-eligible, a narrow question, applying
the two-step framework set by the Court in Mayo.69 The Supreme Court only
scratched the surface of the problem. The issue of software patentability was not
entirely resolved and will likely continue to be litigated.

C. Patent Trolls and Patent Privateering Phenomena

With respect to patent litigation, it is important to bear in mind that the
practice of so-called “patent trolls” raises concerns in the United States. But what
does “patent troll” mean? As Professor Mark A. Lemley clarified, patent trolls are
patent holders that do not practice patents; but rather, their main business is
gathering money from other companies that infringe their patents.70 Since patent
trolls do not create any products or services, they are also known as Patent Assertion
Entities (“PAEs”) or Non-Practicing Entities (“NPEs”).71

In several cases, patent trolls buy patents from the original patent holder, and
later engage in lawsuits against competing firms of the original patent owner. This
strategy, where the patent troll acts as a privateer is also called patent privateering.72

Patent trolls and the patent privateering phenomena is particularly challenging
in the context of software.

According to the patent scholars James Bessen and Micheal J. Meur, patent troll
litigation cost the U.S. economy $29 billion in 2011, fueling a widespread feeling that
there is too much intellectual property litigation.73 Patent litigation has required
defendants to pay tens of billions of dollars per year, and many of these lawsuits have

67 Id.
68 Alice, 134 S. Ct. at 2360.
69 Id. at 2353-2356.
70 Mark A. Lemley & A. Douglas Melamed, Missing the Foster for the Trolls, 113 COLUMBIA L.

REV. 1001 (2013).
71 Thibault Schrepel, Patent Privateering, or Patents as Weapons, LE CONCORRENTIALISTE 1, 2

(2014).
72 Id.; see also John M. Golden, Patent Privateers: Private Enforcement’s Historical Survivors, 26

HARVARD J. L. & TECH. 546, 589 (2013).
73 James Bessen & Micheal J. Meur, The Direct Costs from NPE Disputes, 99 CORNELL L. REV.

387 (2014); Time to Fix Patents, Ideas fuel the economy: Today’s patent systems are a rotten way of
rewarding them, THE ECONOMIST (Aug. 8, 2015); A question of utility, Patents are protected by
governments because they are held to promote innovation. But there is plenty of evidence that they do
not, THE ECONOMIST, (Aug. 8, 2015).

[15:647 2016] Open Source Paradigm: 657
 Beyond the Solution to the Software Patentability Debate

concerned software patents.74 Open source developers and users are particularly
vulnerable to patent troll attacks, whereas large firms protect themselves by
purchasing a huge number of patents.75

Therefore, legislators and courts should identify clear standards or suggest an
appropriate paradigm in the software industry to foster and guarantee technology
development that remains consistent with intellectual property and competition law
purposes.

Finding a clear solution on software patentability and deciding whether all
claims to computer-implemented inventions are patent-eligible is crucial not only for
computer programmers but also for the economy as a whole. Software likely
represents the most important element in computer science and a fundamental
building block of technology development.

III. COMPUTER SCIENTISTS AND THE STUDY OF COMPUTER LANGUAGE

Having analyzed U.S. case law on software patentability, patent trolls and
patent privateering phenomena, I next explain what the most influential computer
scientists say about software patents and software patentability. Is software
patentability good for fostering innovation? Software and computer technology are
based on a number of computer languages. Patenting software would mean
patenting languages and algorithms underlying the software. What does computer
language mean? HTML, URLs, and HTTP, which make the Web work, include a set
of different computer languages.76 HTML (HyperText Markup Language), for
example, represents the standard markup language used to create webpages.
Therefore, what if the Web and its languages had been patented? This and other
similar questions are explored in this section.

74 Timothy B. Lee, Everything you need to know about software patents, VOX, (Oct. 7, 2014),

http://www.vox.com/cards/software-patents. Rockstar v. Google is only an example of patent
litigation that concerns software patentability. See Rayan Davis, Mass. AG Latest To Set Sights On
Patent Trolls, LAW360, (Nov. 6, 2013), http://www.law360.com/ip/articles/486777/mass-ag-latest-to-
set-sights-on-patent-trolls. See, e.g., Steven J. Vaughan-Nichols, Biggest patent win ever? Microsoft’s
billion dollar a year Samsung deal, ZD NET, (Oct. 5, 2014), http://www.zdnet.com/article/biggest-
patent-win-ever-microsofts-billion-dollar-a-year-samsung-deal/ (“In 2013 alone, Microsoft made a
billion dollars from its Samsung Android patent licensing deal alone. In that same year, Microsoft
profited from its Android patents to a tune of about $3.4 billion.”).

75 James Boyle, Open Source Innovation, Patent, Injunction, and the Public Interest, 11 DUKE L.
& TECH. REV. 30, 33 (2013); see also Bruce Perens, Preparing for the Intellectual Property Offensive
(1998), http://www.linuxworld.comllinuxworld. See also Stuart J.H. Graham & David C. Mowery,
The Use of USPTO “Continuation” Applications in the Patenting of Software: Implications for Free
and Open Source, 27 LAW & POL’Y 128, 140 (2003).

76 Tim Berners-Lee, Speech and the Future, SPEECH TECK NEW YORK, (Sept. 24, 2004),
http://www.w3.org/2004/Talks/0914-tbl-speech/text.

[15:647 2016] The John Marshall Review of Intellectual Property Law 658

A. What Computer Scientists think about Software Patentability?

1. The “Father” of Analysis of Algorithms—Prof. Donald Knuth

In 1994, Prof. Donald Knuth, well-known in the computer science world as the
“father” of analysis of algorithms,77 addressed a letter to the Commissioner of
Patents and Trademarks asking to reconsider the current policy of granting patents
for computational processes.78 Although the Supreme Court’s rulings in the 1970s
recognized that software was not eligible for patent protection;79 since 1980 patent
courts and the Patent and Trademark Office have granted hundreds of thousands of
software patents.80

According to Prof. Knuth, this change of approach has harmed society.81
Prof. Knuth compared algorithms with words, alleging that because algorithms are
the fundamental building blocks needed to make software, “algorithms are exactly as
basic to software as words are to writers.”82 Thus, patenting software and the
related algorithm would limit software development.

2. The Founder of the Free Software Foundation—Richard M. Stallman

Similarly, Richard M. Stallman, a famous computer programmer who founded
the Free Software Foundation (“FSF”), compared algorithms or techniques to a series
of musical notes or a chord progression.83 Patenting a series of musical notes or a
chord progression would mean forcing composers to purchase a “musical sequence
license.”84 An algorithm, Stallman clarifies, is a method for solving a problem.
Algorithms are necessary for creating software. When software and its algorithms
are patented, it implies that in order to use that algorithm you would need the
owner’s authorization. Thus, patenting software and related algorithms would limit

77 See, e.g. Donald Knuth, Algorithmic Thinking and Mathematical Thinking, 92 THE AMERICAN
MATHEMATICAL MONTHLY 170 (1985). According to Prof. Knuth, “computer science is primarily the
study of algorithm.” Id. He provided a much broader definition of algorithms than other computer
scientists, considering an algorithm “as encompassing the whole range of concepts dealing with
well-defined processes, including the structure of data that is being acted upon as well as the
structure of the sequence of operations being performed.” Id.

78 Knuth, Letter to the Patent Office From Professor Donald Knuth (1994),
http://progfree.org/Patents/knuth-to-pto.txt.

79 The Supreme Court, for example, in Benson rejected an algorithm for converting binary-coded
decimal numerals into pure binary form as an ineligible patent claims. According to the Court, the
claimed patent was “in practical effect . . . a patent on the algorithm itself.” 409 U.S. at 71-72, 93
S. Ct. 253. Similarly, in Parker, the Court recognized that a mathematical formula for computing
“alarm limits” in a catalytic conversion process was a patent-ineligible abstract idea. 437 U.S. at
594-595.

80 See, e.g., Wlliam D. Wiese, Death of a Myth: the Patenting of Internet Business Models After
State Street Bank, 4 MARQ. INTELL. PROP. L. REV. 17, 18 (2000); Burke, supra note 15, at 1157.

81 Knuth, supra note 77.
82 Id.
83 Simson L. Garfinkel, Richard M. Stallman & Mitchell Kapor, Why Patents are Bad for

Software, SCI. & TECH. (1991).
84 Id.

[15:647 2016] Open Source Paradigm: 659
 Beyond the Solution to the Software Patentability Debate

the improvement of methods for solving problems and creating new software.
Stallman defined the proprietary software social system as “unethical.”85

3. The Founder of Linux Operating System—Linus Torvalds

Another well-known computer scientist, Linus Torvalds, the founder of the
Linux operating system,86 argued that the U.S. patent system has become so broken
that it is hindering innovation.87 Linus Torvalds required the United States to
abolish software patents. Linux is an open source operating system that is used
everywhere. For example, Linux powers Google, Facebook, Twitter, Amazon, air
traffic control systems, the International Space Station, and nine out of the world’s
ten supercomputers run on Linux.88

What would happen if Linux had been patented? Would we be able, for example,
to run Google or Facebook?

4. The Father of the Web—Tim Berners-Lee

Finally, in 1990 Tim Berners-Lee, the inventor of the World Wide Web and
commonly referred to as father of the Internet, wrote the first simple specs of URLs
(then UDIs), HTML and HTTP, which are based on a set of computer languages. By
1993, the Web was expanding very rapidly, and the reason the Web was spreading so
fast was that there was no central control and no royalty fee. Anyone could start
playing with it, browsing, running a server, or writing software without commitment
and without ending up in the control of, or owing money to, any central company.89

The success of the Web implies that patentability of software and computer
languages may not be the most economically efficient.

B. What If the Web Had Been Patented? The Microsoft Network

In January 1995, Bill Gates, the chairman of Microsoft, announced that his next
business target was the Internet.90 In August 24, 1995, Microsoft launched the
Microsoft Network (“MSN”) alongside Windows 1995.

85 Josh Lerner & Jean Tirole, Some Simple Economics of Open Source, 2 J. INDUSTRIAL ECON.,

197, 198 (2002).
86 International Data Corporation has estimated that in the personal computer operating

system market, the open source program Linux, with a 200 percent annual growth rate, has
between seven to twenty-one million users worldwide. Id. at 197.

87 Dylan Love, A Conversation with Linus Torvalds, Who Built the World’s Most Robust
Operating System and Gave it Away for Free, BUSINESS INSIDER, (Jun. 7, 2014)
http://www.businessinsider.com/linus-torvalds-qa-2014-6?IR=T.

88 Linux Foundation, Find your Path to Open Collaboration, The Future is Open, 2 (2013),
www.linuxfoundation.org/sites/main/files/linux_foundation_brochure.pdf.

89 Berners-Lee, supra note 76.
90 Philip Elmer-DeWitt, Will Gates Get the Net?, (Jan. 23, 1995),

http://scripting.com/davenet/1995/01/23/billgatesvstheinternetpart.html.

http://www.linuxfoundation.org/

[15:647 2016] The John Marshall Review of Intellectual Property Law 660

Microsoft bought a minority stake in an Internet access company and built a
nationwide network where customers would be able to dial into the Internet.
Originally, MSN was integrated into the Windows Explorer file management
program through an artificial folder-like graphical user interface in the new
Windows 95.91 The premise was that Gates, whose software ran on nine out of ten
personal computers, would have done to the Internet what he did to the Personal
Computer (“PC”) market. Microsoft would have extended its domination, leveraging
its control in the software and PC market, and imposed a new vertical strategy in the
computer industry. But Gates did not seem to be able to control the Internet with
the launch of MSN.

In contrast to the free web developed by Tim Berners-Lee, Microsoft’s consumers
paid for MSN by the month or hour.92

According to Brad Templeton, president of ClariNet Communication Corp., the
first Internet (and for a long time the largest) electronic newspaper, Microsoft could
not control the central network operating system.93 The Internet was dedicated to
open, nonproprietary software systems. For example, “a week after the Internet
community discovered that the GIF (“Graphics Interchange Format”) system used to
exchange pictures over the network contained a patented compression scheme and
that the patent holder was demanding royalty payments,”94 somebody introduced a
free alternative product. Hence, a graphics-exchange format that worked like GIF,
but patent-free, was quickly developed.95

Microsoft was not the only company that began its own Internet network.96 In
2011, Francis Gurry, the Director General of the UN’s World Intellectual Property
Organization (“WIPO”), alleged that “the Web would have been better off if it had
been locked away in patents, and if every user of the Web . . . needed to pay a license
fee to use it.”97 However, MSN and other proprietary Internet networks did not have
the hoped-for success and did not compromise the development of the free Web. The
latter soon became the fastest growing network, vital to our economy98, and Gates’s
strategy to dominate the Internet failed.99 As demonstrated by this scenario, Gurry’s
suggestion is not a feasible one.
Focusing back on our initial question: What would have happened if the Web had
been patented? Of course, the Web’s innovation level would have been significantly

91 James Gleick, Making Microsoft Safe for Capitalism, N.Y. TIMES, (November 5, 1995)

http://www.around.com/microsoft.html.
92 Id.
93 Elmer-DeWitt, supra note 90.
94 Id.
95 Id.
96 Id.
97 Cory Doctorow, WIPO boss: the Web would have been better if it was patented and its users

had to pay license fees, (Oct. 8, 2011), http://boingboing.net/2011/10/08/wipo-boss-the-web-would-
have-been-better-if-it-was-patented-and-its-users-had-to-pay-license-fees.html.

98 Mark A. Lemley & Lawrence Lessing, The End of End-to-End: Preserving the Architecture of
the Internet in the Broadband Era, Research Paper No. 2000-19, 61 available at
http://cyberlaw.stanford.edu/e2e/papers/Lemley_Lessig_e2epaper.pdf.

99 Donelle Gan, May 26, 1995: Gates, Microsoft Jump on ‘Internet Tidal Wave’, WIRED, (May 26,
2010), http://www.wired.com/2010/05/0526bill-gates-internet-memo/.

[15:647 2016] Open Source Paradigm: 661
 Beyond the Solution to the Software Patentability Debate

limited, and we would likely not have Google Chrome,100 Facebook, or Android.
People would have had to pay a royalty fee to use the Web and consumer welfare
would have been compromised.

In 1995, Tim Berners-Lee said in a talk at MIT:

I had (and still have) a dream that the web could be less of a
television channel and more of an interactive sea of shared
knowledge. I imagine it immersing us as a warm, friendly
environment made of the things we and our friends have seen, heard,
believe or have figured out. I would like it to bring our friends and
colleagues closer, in that by working on this knowledge together we
can come to better understandings.101

In 2015, I am happy to recognize that Tim Berners-Lee’s dream came true. As
the father of the Internet argued, the fact that there is no central control in the Web
and no royalty fees represents its success.102

However, World Wide Web Consortium (“W3C”) critics object that the W3C, led
by Tim Berners-Lee and Jeffrey Jaffe,103 controls the Web and that W3C is
concentrated among large firms and software sellers.104 In 1994, Berners-Lee
founded W3C, an international community created to realize the full potential of the
Web by identifying standards such as the HTML Table and Pics. The W3C is a
standard organization rather than the Web’s owner. W3C has learned from past
experiences the importance of having the browser developers’ support in identifying
new web standards and developing the web as a whole.105 Because W3C does not
control the Web, W3C cannot force browser developers to conform to its standards.
But, involving large firms in the standardization process is fundamental to creating
shared and evenly-developed standards.

The Web is open and universal. As Berners-Lee observed, you cannot pretend
that something is universal if someone keeps control of it.106 Thus, the W3C’s goal is
far from imposing any form of control on the web.

100 Mike Masnick, What If Tim Berners-Lee Had Patented The Web?, TECHDIRT, (Aug. 11, 2011),

https://www.techdirt.com/articles/20110811/10245715476/what-if-tim-berners-lee-had-patented-
web.shtml.

101 Tim Berners-Lee, Hypertext and Our Collective Destiny, (Oct. 12, 1995),
http://www.w3.org/Talks/9510_Bush/Talk.html.

102 Berners-Lee, supra note 76.
103 W3C, About W3C, http://www.w3.org/Consortium/, (last visited, Nov. 29, 2015).
104 Paul Festa, Critics clamor for Web services standards, CNET, (July 10, 2002)

http://www.cnet.com/news/critics-clamor-for-web-services-standards/.
105 Ryan Paul, Tim Berners-Lee talks about W3C reform and reinventing HTML, (30, Oct. 2006),

http://arstechnica.com/uncategorized/2006/10/8101/.
106 Tim Berners-Lee, Frequently asked questions, http://www.w3.org/People/Berners-

Lee/FAQ.html#Roles (last visited, Nov. 19, 2015).

[15:647 2016] The John Marshall Review of Intellectual Property Law 662

C. What does Computer Language Mean? Noam Chomsky and the Hierarchy of
Grammars

Despite Prof. Knuth’s observation that “algorithms are exactly as basic to
software as words are to writers;”107 and consistent with Prof. Noam Chomsky’s
studies of languages, algorithms look more like sentences than only a word.
Algorithms are the foundation for computer languages. Patenting software would
imply patenting the underlying languages and algorithms. But what does computer
language mean? What is the difference between human languages, such as English,
and computer languages?

Prof. Chomsky’s studies of languages have been fundamental for computer
scientists who use them for describing the syntax of the programming language.108
Prof. Chomsky defines language as “a collection of sentences of finite length all
constructed from a finite alphabet of symbols,”109 and grammar as “a device of some
sort for producing the sentences of the language under analysis.”

In 1957, Prof. Chomsky wrote a book on syntactic structures,110 which
provided111 “a general method for selecting a grammar for each language,”112 and
explained the complexity of languages through the hierarchy of languages and
grammar.113

All forms of information—like pictures, numbers, names and sounds—can be
ascribable to strings,114 and the set of strings make up a language.115 This concept is
central to the computer science community which uses programming language to
communicate instructions to computers.

Conversely, grammar is a set of rules that provides “a recursive enumeration”116
of the strings associated with the language. Prof. Chomsky, in his hierarchy of
grammars, identified four different levels of grammars: 1) Type-0 grammars
(unrestricted grammars) comprise all formal grammars; 2) Type-1 grammars
(context-sensitive grammars) creates the context-sensitive language; 3) Type-2
grammars (context-free grammars) includes the context-free languages; and
4) Type-3 grammars (regular grammars) which generate the regular languages
generally applied to identify search patterns and the lexical structure of

107 Knuth, supra note 77.
108 Tao Jiang, Ming Li, Bala Ravikumar, & Kenneth W. Regan, Formal Grammars and

Languages, 1 available at http://www.cs.ucr.edu/~jiang/cs215/tao-new.pdf.
109 Massachusetts Institute of Technology, Noam Chomsky,

http://web.mit.edu/linguistics/people/faculty/chomsky/, (last visited, Apr. 17, 20014). See also, Noam
Chomsky, Bios, http://www.chomsky.info/bios.htm, (last visited, Apr. 17, 2014).

110 NOAM CHOMSKY, SYNTACTIC STRUCTURES at 11 (1957).
111 Noam Chomsky is a professor and one of the most important scholars of linguistics and the

study of language.
112 CHOMSKY, supra note 110, at vii.
113 Id.
114 Riitta Alkula, From Plain Character Strings to Meaningful Words: Producing Better Full

Text Databases for Inflectional and Compounding Languages with Morphological Analysis Software,
4 INFORMATION RETRIEVAL 195, 196 (2001). (“Each word form is an individual character string and,
consequently, a separate index entry (for example, dog and dogs are separate entries).”).

115 Dana Angluin, Finding Patterns Common to a Set of Strings, 21 J. COMPUTER & SYSTEM
SCIENCES 41 (1980).

116 Noam Chomsky & Marcel-Paul Schützenberger, The Algebraic Theory of Context-Free
Languages, 35 COMPUTER PROGRAMMING AND FORMAL SYS. 118 (1963).

[15:647 2016] Open Source Paradigm: 663
 Beyond the Solution to the Software Patentability Debate

programming language.117 Every Type-3 language is also Type-2, 1, and 0, and every
Type-2 is also 1 and 0.

The context-free languages, Type-2, describe the programming language of
computers,118 and Type-3 is, for example, English or French. Computer scientists
used Context-free grammar to build compilers to verify the syntax of computer
programs.119 Context-free grammar concerns a finite set of grammar rules that are
used to create strings.120

Computers are designed to perform only a specific category and number of
operations and not to perform any operation, as human languages are able to
perform.121 A computer executes a specific instruction that determines the necessary
data, device, or mechanism to perform the operation.122 A program is a sequence of
instructions used to solve a specific problem. In computers, the string of zeroes and
ones represents an instruction. Since it is impractical for humans to perform strings
of zeroes and ones, computer programs—software—translate it into “true machine
words and load [it] into memory ready for execution.”123 In sum, software allows
humans to understand the output of machine language instructions. Software is a
set of instructions by which programmers tell computers what to do, implying that
the scope of software patents is very broad. For example, Amazon’s ‘1-Click
Ordering’ is considered a software patent, namely “[a] method and system for placing
an order to purchase an item via the Internet.”124

Hence, software uses a specific language to resolve a problem, and algorithms
can be compared with the sentences of such language.125 When we speak we can use
different words and orders of words to repeat what someone else has already said or
to even explain new and different concepts. Computer programs sometimes include
millions of lines of code, and a computer programmer using these lines could infringe
a few patented lines of code. Patenting software would risk implicitly limiting
programmers when using their own language (a set of strings) to communicate with
computers, and even the Federal Trade Commission has recognized such risk.126

Programming language is classified as Type-2 language and grammar.
Chomsky used the term Type-2 grammar to refer to context-free grammar; this is
exactly how programming grammar and languages should be—free.

117 Noam Chomsky, On Certain Formal Properties of Grammars, INFORMATION AND CONTROL 2,

167-167 (1959).
118 Chomsky Hierarchy, http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Chomsky_hier

archy.html.
119 Jiang, Li, Ravikumar, & Regan, supra note 108, at 1.
120 Noam Chomsky & Schützenberg, supra note 116.
121 M. Goldstein, Computer Languages, 72 AM. MATHEMATICAL MONTHLY 141 (1965).
122 Id.
123 Id. at 143 (1965).
124 Method and Sys. for Placing a Purchase Ord. Via a Comm. Network, U.S. Patent

No. 5,960,411 (filed Sept. 12, 1997) (issued Sept. 28, 1999); see also Lee, supra note 74.
125 Id.
126 FED. TRADE COMM’N, supra note 14.

[15:647 2016] The John Marshall Review of Intellectual Property Law 664

IV. OPEN SOURCE SOFTWARE AND OPEN SOURCE LICENSE

Having explained why software should not be patent-eligible, I now analyze
open source software and open source licenses identifying pros and cons of open
source software and of open source paradigm. Open source software seems to be the
appropriate model to adopt in the software industry.

In the 1960s and 1970s, the first open source projects were developed in
universities and corporate research facilities. Unix, probably the first important
open source community product,127 is an operating system originally developed by
AT&T Bell Laboratories and then distributed to the government and academic
institutions after U.S. antitrust regulations prohibited AT&T from competing in the
computer industry and greatly extending its popularity.128 In the 1980s, computer
users started seeing Unix as a likely universal operating system compatible with all
types of computers. Since then, many versions of Unix and other open source
software, such as Linux, Apache and Android, have been developed.

If almost everyone has an idea of what closed source software is and how its
licensing works, only a few know the meaning of open source software and open
source licensing. Why should a firm invest time and money on projects to innovate
and develop technology without the possibility of acquiring exclusionary rights? Is
the open source paradigm economically sustainable in software markets? It is clear
why someone should invest in patented inventions like closed software, but the
incentives associated with investments in open source are less intuitive. In this Part,
I clarify open source licensing and explore the incentives to develop and invest in
open source software products.

In the software industry there are two different approaches. The open source
approach concerns software creators and scholars that are for a radical decrease of
property rights for software. The closed source approach would incentivize the
imposition of strong property rights because software has creative commons. The
open source community embodied by software developers embraces the first
approach.

Software developers hold that contributing to collaborative projects both allows
someone else to freely use their software and incentivizes high-quality programs.
The Linux kernel, Firefox Web Browser, and Android are only a few examples of open
source software. Open source software is opposite to proprietary or closed software
and is also called free open source software (“FOSS”) to emphasize freedom from
control by another and/or ethical issues. Open source software not only means no
proprietary software, but also implies that open source code can be reused by anyone
in a different project.129 For example, the Internet browser Mozilla was created with
the release of Netscape’s source code.130

Therefore, open source software is not only free, but its source code is also
public. However, open source products are still licensed.

127 Lerner & Tirole, supra note 85, at 201.
128 COLIN RITCHIE, OPERATING SYSTEM INCORPORATING UNIX & WINDOWS 9 (Thomson ed., 4th

ed., 2003).
129 See, e.g., Michal S. Gal, Viral Open Source: Competition vs. Synergy, 8 J. COMPETITION L. &

ECON. 469, 475 (2012).
130 Mozilla, History of Mozilla, https://www.mozilla.org/en-US/about/history/details/ (last visited

Aug. 12, 2015).

[15:647 2016] Open Source Paradigm: 665
 Beyond the Solution to the Software Patentability Debate

A. Open Source Licenses: GPL—LGPL—Creative Commons

A software programmer distributes its software through a license.131 The
license authorizes the licensee to take only those actions within the scope of the
granted license. Several types of licenses exist and can be categorized into a
proprietary model of copyright (with a restrictive license), and the free/open source
model (with an open source license). Generally, firms like Microsoft132 and Apple
adopt a proprietary model to license end-users their products, such as software, for a
fee. Conversely, the open source movement opts for the free source model and open
licenses, such as GPL, LGPL, BSD (the so-called FOSS Licenses), and creative
commons licenses to distribute their works.133

1. GPL

In 1989, Richard Stallman, the initiator for the open source movement, wrote
the first version of the General Public License (“GPL”).134 Open source software, like
Firefox, is generally licensed by GPL,135 which allows third parties to retain the right
to use, modify, and redistribute an author’s copyrighted work. This license implies
four freedoms, namely: (i) running the program for any purpose; (ii) studying and
modifying the program; (iii) redistributing copies of the software; and (iv) revising the
software and releasing the versions to the public.136 The GPL provides the so-called
“copyleft” feature, which implies that any derivative works would have to be released
under the GPL.137 According to the open source movement, the name ‘copyright’ was
changed to ‘copyleft’ because, in contrast to proprietary software, the GPL of open
source software would guarantee freedom.138

The logic under open source contrasts with the practice of acquiring monopoly
power and maximizing profits. The Seventh Circuit recognized that the GPL “is a
cooperative agreement that facilitates production of new derivate works, and
agreements that yield new products” 139 otherwise not legally discovered through
unilateral action.

131 According to the RESTATEMENT OF PROP. § 512 cmt. a (1944), “the word ‘license’ is used to

describe any permitted unusual freedom of action. It may be used to describe privileges to carry on
businesses or to practice callings not otherwise permitted.”

132 However, companies like Microsoft started using also open licenses, such as Microsoft
Community License and Microsoft Permissive License.

133 See, e.g., Brian Fitzgerald Lero, The Transformation of Open source Software, 30 MIS
QUATERLY 587, 590 (2006).

134 See Gal, supra note 129 at 477.
135 GNU Operating System, https://www.gnu.org/gnu/gnu.html (last visited Feb. 9, 2015).
136 Gal, supra note 129 at 469.
137 David Ferrance, Economic Interests and Jacobsen v. Katzer: Why Open Source Software

Deserves Protection under Copyright Law, 58 J. COPYRIGHT SOC’Y U.S.A. 819, 824 (2011); see also,
Andrew LaFontaine, Adventure in Software Licensing: SCO v. IBM and the Future of the Open
Source Model, 4 J. ON TELECOMM. & HIGH TECH. L. 449, 461-63 (2006).

138 GNU OPERATING SYSTEM, Licenses,
http://www.gnu.org/licenses/licenses.html#WhatlsCopylefte (last visited Nov. 24, 2015). (“Copyleft
guarantees that every user has freedom”).

139 Wallace v. IBM, 467 F.3d 1104, 1107 (7th Cir. 2006).

[15:647 2016] The John Marshall Review of Intellectual Property Law 666

Although the wording “cooperative agreement” could raise some antitrust
concerns, Judge Easterbrook observed open source software and the GPL “have
nothing to fear from the antitrust laws.”140 Judge Easterbrook noted that
cooperative agreements, like GPL, incentivize creation of new derivative products
that “would not rise through unilateral actions” and are lawful.141 Further,
information exchanged through an open source platform between competitors is
public.

With respect to GPL’s enforceability, two main schools of thought explain how
the GPL is enforceable. Richard Stallman, the father of the GPL, argues that the
GPL is a non-contractual license.142 According to Stallman, contract law would
imply, among other things, that each distributor should get the user’s formal assent
to the contract before providing a copy.143 A different school of thought holds that the
GPL is a contract.144 Professor Mark Patterson observed that the best solution could
be “conform[ing] licensing law to clearly defined and already-existing rules based on
contract.”145 However, although the Federal Circuit seems to consider a license as a
contract,146 the debate on license v. contract of the GPL still exists.

Alleging that the GPL is a pure license and that it is a unilateral grant of rights
implies that a software licensor may revoke the GPL grant of rights to third parties
at any time for any reason. Embracing the contract interpretation, the GPL might
bring damages and infringement lawsuits. The plaintiff might compel the defendant
to make her software open source.

As Prof. Eben Moglen observed, if the defendant wrongfully included GPL-
licensed code in its own property work it might be “mulcted in damages for the
distribution that has already occurred, and prevented from distributing its product
further.”147

However, my purpose is not to develop this aspect but only clarify that the GPL
is a standard-form license prepared by Free Software Foundation (“FSF”), and that
the issue of the nature of the GPL is still under debate. The peculiarity of the GPL is
that if a licensor owns software that incorporates GPL-licensed code, the licensor has
to offer such software under the GPL’s terms, the so-called “copyleft.”148 However,
anyone can use GPL-licensed software and not accept the license. Further, GPL

140 Id. at 1108.
141 Id. at 1107.
142 See The GPL is a License, Not a Contract, Which is Why the Sky Isn’t Falling,

GROKLAW.NET, (Dec. 14, 2003, 9:06 PM),
http://www.groklaw.net/article.php?story=20031214210634851.

143 Richard M. Stallman, Don’t Let ‘Intellectual Property’ Twist Your Ethos, GNU OPERATING
SYS., (June 9, 2006), http://www.gnu.org/philosophy/no-ip-ethos.html.

144 See, e.g., Mark R. Patterson, Must Licenses be Contracts? Consent and Notice in Intellectual
Property, 40 FLA. ST. U. L. REV. 105 (2012). According to Professor Mark Patterson, “[a]
requirement that license restrictions be imposed only by contract ensures that intellectual property
owners obtain both the consent of licensees to the restrictions and consideration sufficient to make
the contract enforceable.” Id. at 108.

145 Id.
146 Id. at 131, 132. See e.g., Sun Microsystems, Inc. v. Microsoft Corp., 188 F. 3d 1115, 1122 (9th

Circuit 1999).
147 Pamela Jones, The GPL Is a License, not a Contract (Dec. 3, 2003),

http://lwn.net/Articles/61292/.
148 Eben Moglen, Free Software Matters: Enforcing the GPL, I 2 (Aug. 12, 2001),

http://moglen.law.columbia.edu/publications/lu-12.html; see also Ferrance, supra note 137, at 824.

[15:647 2016] Open Source Paradigm: 667
 Beyond the Solution to the Software Patentability Debate

covers merely the software. The physical media derived from the software licensed
by GPL can be charged.149

2. LGPL

The GPL is the most widespread license for open source software,150 but it is not
the only one. FSF introduced a lighter version of GPL, the Lesser GPL (“LGPL”).
Similar to the GPL, the LGPL grants the same four freedoms (freedom to run the
program, to study how the program works, freedom to improve the program, and to
redistribute copies of the software), but it is less restrictive than GPL. LGPL, for
example, does not require revealing the source code of the proprietary software. The
LGPL is also called ‘a weak copyleft license’ because code licensed under it could be
combined with proprietary code and used in that way. The FSF does not promote
licenses encouraging the use of the first and less permissive GPL.151

3. Creative Commons

The Creative Commons (“CC”) License is a flexible license that allows people to
share, use and develop creative works, without worry of infringing copyrights.
Through a CC license you can reserve “some rights” instead of “all rights.”152 You
can also limit the use of your work to a ‘no commercial use.’ The GPL license was
specifically written for software, whereas the CC license was thought of for any
scientific or artistic product. There are a large number of CC licenses available, and
hundreds of millions of scientific and academic materials, songs and videos.153 For
example, Wikipedia adopts the CC Attribution Share-Alike license.154 The idea
underlying the CC license was copied from the FSF. At the beginning, the CC license
was not compatible with the GPL license; but now the CC license is included in the
free software license list.155 However, in the software context, the CC community

149 Wallace, 467 F.3d at 1106.
150 See Sapna Kumar, Enforcing the GNU GPL, 1 J. L. TECH. & POL’Y 1, 3 (2006). See also

Lerner & Tirole, supra note 85, at 202.
151 GNU OPERATING SYSTEM, Gnu Lesser General Public License, (Jun. 29, 2007),

http://www.gnu.org/licenses/lgpl-3.0.en.html; see also GNU OPERATING SYSTEM, Why you Shouldn’t
Use the Lesser GPL for your Next Library, http://www.gnu.org/licenses/why-not-lgpl.en.html;
Eli Greenbaum, Open Source Semiconductor Core Licensing, 25 HARV. J. LAW & TEC 131, 140 (2011).

152 CREATIVE COMMONS, ABOUT, http://creativecommons.org/about; see also, Jacobsen v. Katzer,
535 F.3d 1373, 1378 (Fed. Cir. 2008).

153 Id.
154 CREATIVE COMMONS, Wikipedia + CC BY-SA = Free Culture Win!,

http://creativecommons.org/weblog/entry/15411. (“Wikipedia community and Wikimedia Foundation
board approved the adoption of the Creative Commons Attribution-Share CC BY-SA) license as the
main content license for Wikipedia and other Wikimedia sites.”).

155 CREATIVE COMMONS, GPL, http://creativecommons.org/tag/gpl.

[15:647 2016] The John Marshall Review of Intellectual Property Law 668

incentivizes the use of the GPL license recommending “against the use of creative
commons license for software.”156

B. Motivations for Contributing to Open Source Software

The first economic dogma is based on preserving economically efficient
incentives. Where are these incentives in open source paradigm located? If no
individual or firm has proprietary control of the open source software, what economic
incentives do those who work for developing and improving that software have?

Open source has the recognized capacity to produce higher quality products157
with more innovative character158 than similar proprietary products (Android is an
example). A collaborative and decentralized development model provides better and
more rapid solutions than a centralized and static enterprise model. By doing so,
open source promoters argue that this flexible and open source paradigm benefits
innovation increasing consumer welfare. However, the key inquiries of what
economic incentives firms and individuals have in investing in open source projects
remains unknown. The logic of patent law is that by providing the right to exclude
others from making, using, offering for sale, or selling its own product through a
patent, the legislator preserves the economic incentives of those who want to invest
in research and development. Microsoft, for example, has one of the most relevant
patent portfolios in the world and has not shown any signs of slowing such activity
over the years.159

Conversely, open source products are inherently free. As scholars like Jean
Tirole and Ronald J. Mann observed, one of the goals of open source projects is to
contrast and decrease the monopoly power of companies like Microsoft or Apple.160 It
sounds like an economic strategy to compete with technological giants otherwise
immune to the competitive game. While Microsoft or Apple usually develop a vertical
integration strategy, the open source model, as Judge Easterbrook noted, calls to
mind the economics of joint venture.161 Similar to open source strategy, the latter
relies on cooperation amongst different people or groups.

Another reason to invest in an open source project is to create and develop a
product that serves firms to develop and profit from complementary and proprietary
products.162 The major investors of Linux software are IBM, Intel, HP, Fujitsu,

156 CREATIVE COMMONS, Frequently Asked Questions,

https://wiki.creativecommons.org/wiki/Frequently_Asked_Questions#Can_I_use_a_Creative_Commo
ns_license_for_software.3F.

157 See, e.g., Lero, supra note 133, at 587.
158 Open Source Initiative, About the Open Source Initiative (last visited Feb. 9, 2015),

http://opensource.org/about. See also Gal, supra note 129, at 475.
159 Steve Branchman, Microsoft Patents Business Data Services, Anti-Phishing Scanners and

Tailored Web Services,IPWATCHDOG, http://www.ipwatchdog.com/2014/10/04/microsoft-patents-anti-
phishing/id=51500/.

160 Lerner & Tirole, supra note 85, at 225; Ronald J. Mann, Commercializing Open Source
Software: Do Property Rights Still Matter?, 20 HARV. J.L. & TECH. 1, 23 (2007).

161 Wallace, 467 F.3d at 1108.
162 Mark A. Lemley & Ziv Shafir, Who Chooses Open-Source Software?, 78 U. CHI. L. REV. 139,

140 (2011).

[15:647 2016] Open Source Paradigm: 669
 Beyond the Solution to the Software Patentability Debate

Novell, Red Hat, and General Motors.163 Each one of these companies is active in a
different product market supplementary to Linux. For example, IBM164 invested a
lot in distributing GNU/Linux and other free software communities’ products to both
increase marketability of its hardware products and decrease the cost of its
services.165 Economic incentives to invest in open source projects, such as Linux,
seem linked to the value chain concept.

As Prof. Ronald J. Mann noted, “investing in Linux is a rational step for the
individual members of the OSDL not because it might harm Microsoft or generate
profits from direct sales, but because developing Linux as a high-quality operating
system permits each of them to develop complementary goods and services in their
respective core competencies.”166 It means that Linux or the free web can be
compared with platforms167 used by third-party software to develop complementary
goods.

The creation of a common platform to develop such products bears to mind the
essential facility doctrine, namely, the conjecture that forced sharing of essential
inputs at regulated rates increases competition and fosters innovation.168
Historically, the essential facility doctrine was successfully applied in the
telecommunication industry. However, in contrast to this doctrine, the common
platform created by open source community is not a forced sharing of essential
information. Rather, it is a voluntary platform that such community created for
exchanging and sharing knowledge and information among computer users to
identify and develop even more advanced software.

In sum, big companies like Google, Samsung and IBM are important investors in
the open source community, but the protagonists of that community are people
moved by intellectual curiosity like Linus Torvalds or Tim Berners-Lee.169 Together,

163 See, e.g., Lerner & Tirole, supra note 85, at 198.
164 Further, IBM, although its Eclipse IDE was valued at 40 million of dollars, decided to move

it to open source, increasing its popularity and the market for its ancillary products. See Lero, supra
note 133, at 592.

165 Eben Moglen, Free Software Matters: Free Government 2 (Sep. 14, 2002),
http://moglen.law.columbia.edu/publications/lu-23.pdf. See also, Lero, supra note 133, at 592.
(“Several companies leverage open source as a base upon which they offer products other than
software.”)

166 Mann, supra note 160 at 25.
167 See Lero, supra note 133, at 589. The most relevant FOSS products, such as Apache, Linux

and Mozilla “are all example of horizontal infrastructure software.”
168 MCI Commc’n Corp. v. American Tel. & Tel. Co., 708 F.2d 1081, 1132 (7th Cir. 1983). Here,

[t]he jury found that AT&T unlawfully refused to interconnect MCI with the local
distribution facilities of Bell operating companies—an act which prevented MCI
from offering FX and CCSA services to its customers. A monopolist’s refusal to
deal under these circumstances is governed by the so-called essential facilities
doctrine. Such a refusal may be unlawful because a monopolist’s control of an
essential facility (sometimes called a “bottleneck”) can extend monopoly power
from one stage of production to another, and from one market into another. Thus,
the antitrust laws have imposed on firms controlling an essential facility the
obligation to make the facility available on non-discriminatory terms.

Id. at 1132 (emphasis added).
169 According to Linus Torvalds, “I really don’t think you need all that much ‘quid pro quo’ in

programming—most of the good programmers do programming not because they expect to get paid
or get adulation by the public, but because it is fun to program.” See FM Interview with Linus
Torvalds: What Motivates Free Software Developers?, 3 FIRST MONDAY, (Mar. 1998), available at

[15:647 2016] The John Marshall Review of Intellectual Property Law 670

all, for different reasons, today contribute in the development of a free and open
technological innovation process.

C. Vertical Integration v. Open Source Licensing – Android Case

Android shows that the open source paradigm can be profitable and successfully
implemented in the technology industry. According to the smartphone research firm
Strategy Analytics, Android accounted for 81.3 percent of worldwide smart phone
shipments in the third quarter of 2013.170 But how does open source paradigm
diverge from a vertical integration strategy?

Software markets promote closed operating systems (see Apple’s iOS) as well as
open operating systems (see Android). While closed operating systems are vertically
integrated—Apple produces Apple’s iOS for its own iPhones—open operating systems
are common platform (unphysical infrastructure) shared and used by several
competing corporations. Open source products are the result of a sort of joint venture
among competitors to develop a free, open, and competitive platform, which serves to
create more advanced technological complementary goods. Companies that invest in
open source products do not profit from the open source product, but from
complementary goods based on the open source technology.

The open source model threatens the closed source model in the software
market. For example, significant network effects characterize the technology
industry and software market. This means that if the majority of consumers buy
Apple iOS products, the value of Apple’s operating system increases. Conversely, if
the majority of consumers buy smartphones with Android, the value of Android’s
smartphone increases. In industries characterized by network effects, open source
provides unique procompetitive advantages. In the context of standards, for
example, if the standard is proprietary, the costs of switching to a new standard are
high. Although better alternatives are developed, users are hooked in and the
standard holder can extract super competitive rents. This phenomenon (the higher
royalty based on switching costs) is well known as hold-up value of the patent and
consumers bear the cost of reduced innovation and higher prices of the standard.
Conversely, if the standard is open, although it is dominant, a monopolist extracting
rent cannot exist and no such hold-up is possible because of the cost of switching.171
Open source paradigm guarantees transparency, and transparency implies low-cost
and no-cost versions of the good that can be offered. Thus, open source standard
means better allocation of productive resources; open source products, being some of
the most advanced products offered for free, create pro-competitive and pro-consumer

http://www.firstmonday.org/issues3_3/torvalds/index.html (on file with the University of Illinois Law
Review); see also Lemley & Shafir, supra note 162, at 140.

170 Kukil Bora, Android Powers 81 Percent Of All Smartphones Shipped Worldwide In Q3 As
iOS Market Share Drops, INT’L BUS. TIMES, (Nov. 2, 2013) http://www.ibtimes.com/android-powers-
81-percent-all-smartphones-shipped-worldwide-q3-ios-market-share-drops-1451134. In October
2015, Android held a market share of 52.61 percent of worldwide Mobile/Tablet Operating System
Market and Apple IOS got 40.26 percent of market share. Mobile/Tablet Operating System Market,
NETMARKETSHARE, (October, 2015), https://www.netmarketshare.com/operating-system-market-
share.aspx?qprid=8&qpcustomd=1.

171 Boyle, supra note 75, at 31.

[15:647 2016] Open Source Paradigm: 671
 Beyond the Solution to the Software Patentability Debate

advantages.172 Prof. Moglen also emphasizes that monopoly power is weakened by
the adoption of free software.173 The open source paradigm, however, might easily
infringe patents and standards, questioning the entire patent system in the
technological world.

The crucial question at hand is: Do Android and other open source software
represent the best model in terms of competition and firms’ economic incentives to
innovate? Berners-Lee recognized that “commercial applications including eBay,
Google, Yahoo, and Amazon.com are but a few examples of the extraordinary
innovation that is possible because of the[ir] open, standards-based, royalty-free”
nature.174

Thus, for these and the other reasons explained in this article, I agree with Tim
Berners-Lee, and strongly believe that the open source model is the most efficient
economic model that could be implemented in the software industry. The
implementation of the open source model thus far, and its benefits to consumers,
implies that we should adopt it in many other technological and innovative
industries. Nowadays, open source appears as the new business model
created/developed by the free and open movement of the Internet. The same Internet
has caused the third industrial revolution; business models developed before such a
revolution are hardly efficient or competitive now.

V. COPYRIGHT AND OPEN SOURCE

Last but not least, even without software patents, presumably software could be
copyrighted. Thus, a legitimate question would be: Is the copyright protection of
software the sought-after compromise between patent protection and no protection at
all?

Before answering this question, I explain what copyright software implies and
the main differences between software copyright and software patent.

Further, I explain how copyright and open source can coexist identifying the best
solution in terms of licenses to guarantee the adequate protection for software
developers and technological innovation as a whole.

A. Patent and Copyright Protection in Comparison

A legal system usually provides rights and protections for intellectual properties,
among them are patent and copyright protection. A patent protects an invention of a

172 Id. at 62.
173 Eben Moglen, Free Software Matters: Free Government 1 (Sep. 14, 2002), available at

http://moglen.law.columbia.edu/publications/lu-23.pdf.
174 Testimony of Sir Timothy Berners-Lee CSAIL Decentralized Information Group

Massachusetts Institute of Technology, Hearing on the Digital Future of the United States: Part I—
The Future of the World Wide Web (2007), http://dig.csail.mit.edu/2007/03/01-ushouse-future-of-the-
web.html.

[15:647 2016] The John Marshall Review of Intellectual Property Law 672

tangible thing that is new, useful and non-obvious.175 Conversely, copyrights protect
creative works in art, literature, theatre, photography, film & TV, and programming.

Patent protection gives the inventor, for a limited period of time, the exclusive
rights to make, use, and sell the invention in the State where the patent was issued.
Similarly, the author of a copyrighted product has the only right to reproduce,
distribute, and perform the copyrighted work.176 Thus, how much of a difference
does copyright protection make? Here are some thoughts.

1. Copyright Protection v. Patent Protection

Despite patents and copyrights granting their respective owners similar
exclusive rights, patents cover inventions, such as operational methods and
procedures, whereas copyrights concern expressions and creative works. Copyrights
do not protect the core idea or facts upon which the author’s creative expression is
based. The discovered historical or scientific facts and ideas are in the public
domain, and anyone is free to use such facts or ideas.177 Rather than only protecting
the subject matter of paintings or writings, copyrights cover forms of expression.
Further, some copyright exceptions exist. In certain circumstances you can invoke
the ‘fair use’ rule, which allows (without asking an author’s permission) a limited use
of copyrighted works.178 For example, the fair use rule allows researchers to quote
short passages in a scientific, academic, or technical work to clarify author’s opinions
or observations. The fair use privilege likely represents the most important
limitation on copyright holders’ rights.

2. Patent and Copyright in the Software Context

In the context of software, copyright protection works the same way as it works
in any other artistic/literary work. Software copyright implies that a program
developer owns the right of copying and adapting his own program’s code, but anyone
can reprogram the copyrighted software without infringing the copyright.

As Sam Williams and Richard Stallman observed, the fact that copyrights do not
cover ideas means that “a developer is free, under copyright, to implement in his own

175 See U.S. Patent Act, 35 U.S.C. §§ 101 et. seq. In the United States there are several types of

patents, among which are utility patents and design patents. U.S. PAT. & TRADEMARK OFFICE,
TYPES OF PATENTS, http://www.uspto.gov/web/offices/ac/ido/oeip/taf/patdesc.htm (last visited Nov.
23, 2015).

176 The U.S. Copyright Act (17 USC §§ 100 et. seq.) establishes copyright protection “for original
works of authorship fixed in any tangible medium of expression, now known or later developed, from
which they can be perceived, reproduced, or otherwise communicated, either directly or with the aid
of a machine or device.”

177 See, e.g., Steve Posner, Can a Computer Language be Copyrighted? The State of Confusion in
Computer Copyright Law, 11 COMPUTER L. J. 97, 104 (1992).

178 Nolo Law for All, The ‘Fair Use’ Rule: When Use of Copyrighted Material is Acceptable,
http://www.nolo.com/legal-encyclopedia/fair-use-rule-copyright-material-30100.html.

[15:647 2016] Open Source Paradigm: 673
 Beyond the Solution to the Software Patentability Debate

code features and commands he has seen in existing programs.”179 Thus, “[i]t is
likewise lawful—through hard work—to decode how a binary program works, and
then implement the same ideas and algorithms in different code. This practice is
known as “reverse engineering.”180

In the United States, software benefits from both patent and copyright
protection. Patenting software, a set of instructions by which programmers tell
computers what to do, means to patent a process, a specific human order translated
into machine language. By doing so, the patent covers the idea and the facts
underlying the software, and it is difficult to reproduce similar elements/processes or
facts without infringing the related patents.

Sam Williams and Richard Stallman noted that patent holders have the power
to prohibit the use of the patent’s underlying idea to an independent developer of
software programs.181 In contrast to copyrighting of software, if the software is
patented, a programmer cannot implement the patented invention and algorithms in
different code.

As scholars recognize, patenting software stifles the creation of even more
developed and efficient software, and compromises the development of technology.182
Protecting software developers and recognizing their work is fundamental, but an
inappropriate protection can limit innovation instead of incentivizing technological
development.

3. Software Copyright—Jacobsen Case

The Jacobsen case helps understand how copyrights and open source software
can coexist and why copyright represents the appropriate legal protection for
software. Jacobsen licensed its computer programming through an Artistic License,
an open source copyright license.183 Jacobsen sued Katzer for copying and modifying
its software, going beyond the scope of the Artistic License.

Jacobsen handled the Java Model Railroad Interface (“JMRI”), an open source
software group which created, with other participants, the DecoderPro computer
programming application. Katzer started offering competing software, the Decoder
Commander that used the DecoderPro software files without including the terms of
the Artistic License.184

179 SAM WILLIAMS, FREE AS IN FREEDOM (2.0): RICHARD STALLMAN AND THE FREE SOFTWARE

REVOLUTION 112 (Richard M. Stallman ed., 2d ed. 2010), available at
https://sagitter.fedorapeople.org/faif-2.0.pdf.

180 Id.
181 Id. at 113.
182 Michele Boldrin & David K. Levine, The Case Against Patents, FED. RES. BANK OF ST. LOUIS,

RES. DIV. (2012), http://research.stlouisfed.org/wp/2012/2012-035.pdf.
183 Jacobsen, 535 F. 3d at 1376.
184 Id. at 1377. In particular, “the Decoder Commander software did not include (1) the author’s

name, (2) JMRI copying notices, (3) references to the Copying file, (4) an identification of
SourceForge or JMRI as the original source of the definition files, and (5) a description of how the
files of computer code had been charged from the original source code.” Id.

[15:647 2016] The John Marshall Review of Intellectual Property Law 674

Copyrighted works are usually distributed for money. Open source licenses do
not ask for money, but there are several benefits (such as economic benefits) under
the open source license.185

The crucial issue discussed in Jacobsen’s appeal was whether to regard the
terms of the DecoderPro license as conditions of the copyright license or covenants. If
such terms were conditions, or both covenants and conditions, then they would
concern copyright law and limit the scope of the license.186 Conversely, if the Artistic
License’s terms were merely covenants, Jacobsen could have invoked only a contract
law violation. In contrast to the District Court’s holding,187 the Court of Appeals
recognized that the Artistic License “use[d] the traditional language of conditions by
noting that the right to copy, modify, and distribute are granted ‘provided that’
typically denotes a condition.”188

Copyright owners who opt for open source licensing control the distribution and
modification of the copyrighted work. Money damages are not necessary to support
the copyright right to exclude.189 Therefore, the Court of Appeals stated that Katzer
infringed Jacobsen’s copyright by going “outside the scope of the Artistic License to
modify and distribute the copyrighted materials without copyright notices and a
tracking of modifications from the original computer files.”190

In sum, Jacobsen’s case clarified that open source software is entitled to the
same legal protection as proprietary software.191 On the one hand, open source
licensing means that the copyrighted work is available to the public for free, and on
the other hand the copyright holder keeps the right to decide by whom and how its
work can be used, modified and sold.

VI. FINAL CONSIDERATIONS—WHY OPEN SOURCE PARADIGM?

This article started with the software patentability debate, explaining how the
granting of software patents is harmful for technological innovation, and should not
be allowed. Software patentability limits the open source community from freely
developing software and offering new technologies to consumers for free. By
continuing to patent software, Patent and Trademark offices, as well as courts that
uphold those patents, appear to limit competition in the affected markets and retard
the crucial innovation of technology—a trend that is constantly reinforced by
legislators, regulators, and the legal community. Open source software is the natural
response to software development and the Internet; the open Web’s success is clear
evidence that the open source paradigm works in technological industries, allowing
everybody to develop even better complementary products based on the open source

185 Id. at 1379 (“The Eleventh Circuit has recognized the economic motives inherent in public

licenses, even when profit is not immediate.”)
186 Id. at 1380.
187 Id. at 1381; see also, Victoria Nemiah, License and Registration, Please: Using Copyright

“Conditions” to Protect Free/Open Source Software, 3 NYU J. INTELL. PROP. & ENT. L. 358, 378-79
(2014).

188 Id. at 1381.
189 Id. at 1382.
190 Id.
191 Ferrance, supra note 137.

[15:647 2016] Open Source Paradigm: 675
 Beyond the Solution to the Software Patentability Debate

platform. The open source model promotes the free sharing of information,
encouraging anyone to use and develop the open source technology. Moreover, even
without software patents, software can be copyrighted. Software copyrights provide
adequate protection for software developers, recognizing the author’s creation and
providing legal protection from abusive conduct.

Open source products are offered free of charge, so such products will inevitably
increase consumer welfare. Thanks to the open source paradigm, consumers benefit
from high-quality products, such as Linux, free of charge.

Furthermore, the software industry is not the only industry that would benefit
from a widespread adoption of the open source model.192 The open source paradigm
could be the most appropriate economic model for a number of technological markets.
The open source paradigm has nothing to fear from either the antitrust laws or
intellectual property laws. By offering products free of charge, open source goods
increase consumer welfare, attaining the main goal of antitrust regulations.
Encouraging the development of advanced products is exactly the purpose of patent
law.

Open source implies transparency, democracy, freedom, cooperation,
development, efficiency, innovation, creative, and equality. Therefore, open source
can be better expressed as an economic/social paradigm that is able to perform
transparency, democracy, freedom, cooperation, development, efficiency, innovation,
creative, equality in software and other crucial markets.

192 Mark A. Lemley & Ziv Shafir, Who Chooses Open-Source Software? 140 (Stan. L. & Econ.

Olin Working Paper No. 382, 2009), available at http://ssrn.com/abstract=1495982; see also
Andrew W. Torrance, Open Source Human Evolution, 30 WASH U. J.L. & POL’Y 93, 125-28 (2009).

