
THE JOHN MARSHALL
REVIEW OF INTELLECTUAL PROPERTY LAW

ABSTRACTION IN SOFTWARE PATENTS (AND HOW TO FIX IT)

ATHUL K. ACHARYA

ABSTRACT

Software has long posed a quandary for patent law. As many have observed, software is an abstract
technology—but abstract ideas are supposedly ineligible for patenting. This Article explores just
what that means, what it doesn’t mean, and what might fix the problem of abstraction in software
patents.

This Article offers two related ways to understand the abstract nature of software. First, computer
science defines itself as a “science of abstraction,” and that self-definition finds real doctrinal
purchase. Second, software code is designed to be what the doctrine calls “functional”—to describe
abstract results that can be executed on heterogenous hardware without regard to how the results
are achieved. Because software is functional, claims to software must necessarily also be functional.
But functional claiming is exactly what the doctrine forbids.

This Article also examines and refute a third reason some have offered: the idea that software
algorithms are “just math.” Algorithms involve math and can be described by math, but they are not
themselves math. In fact, this Article proposes that the way to fix software patents is to require
patentees to claim algorithms—concrete algorithms, written in pseudocode, just as they would
communicate their invention to other programmers.

Copyright © 2019 The John Marshall Law School and Athul K. Acharya.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License.

Cite as Athul K. Acharya, Abstraction in Software Patents (and How to Fix it),
18 J. MARSHALL REV. INTELL. PROP. L. 364 (2019).

364

ABSTRACTION IN SOFTWARE PATENTS (AND HOW TO FIX IT)

ATHUL K. ACHARYA

I. INTRODUCTION .. 365	
II. THE ABSTRACT-IDEAS DOCTRINE: A QUICK TOUR .. 368	
III. COMPUTER SCIENCE: THE SCIENCE OF ABSTRACTION ... 370	
IV. SOFTWARE: IT’S FUNCTIONAL ALL THE WAY DOWN ... 373	
V. ALGORITHMS: NOT THE PROBLEM, BUT THE SOLUTION .. 375	

A. Just math? Not quite. ... 376	
B. Pseudocode claims. ... 377	

VI. CONCLUSION ... 381	

[18:364 2019] Abstraction in Software Patents (and How to Fix it) 365

ABSTRACTION IN SOFTWARE PATENTS (AND HOW TO FIX IT)

ATHUL K. ACHARYA*

I. INTRODUCTION

The abstract-ideas doctrine is a mess. Courts and commentators, defenders and
detractors, all agree. It is a “morass,”1 an “incoherent body of doctrine,”2 a “foggy
standard cloaked as a rule.”3 It is “unprincipled and vague”;4 it is “indeterminate and
often leads to arbitrary results.”5 One judicial critic recently declared that the law
“renders it near impossible to know with any certainty whether [an] invention is or is
not patent eligible.”6 In fact, the former head of the Patent and Trademark Office
has publicly called to scrap the whole thing.7

Much of the sturm und drang in the abstract-ideas doctrine—nearly all of it, in
fact—is over software patents. The Supreme Court case that established the current
doctrinal landscape, Alice Corp. Pty. Ltd. v. CLS Bank Intern.,8 was a software-

* © Athul K. Acharya 2019. Impact Litigation Associate, BraunHagey & Borden LLP. I am

indebted to Mark Lemley and Brian L. Frye for their helpful comments and suggestions on a draft of
this paper.

1 John M. Golden, Flook Says One Thing, Diehr Says Another: A Need for Housecleaning in the
Law of Patentable Subject Matter, 82 GEO. WASH. L. REV. 1765, 1766 (2014); see Tun-Jen Chiang,
The Rules and Standards of Patentable Subject Matter, 2010 WIS. L. REV. 1353, 1394 (2010)
(describing the state of affairs as “doctrinal chaos”); Mark A. Lemley et al., Life after Bilski, 63 STAN.
L. REV. 1315, 1316 (2011) (asserting that “no one understands” it).

2 Andrei Iancu, Remarks by Director Iancu at the Intellectual Property Owners Association 46th
Annual Meeting (2018), https://www.uspto.gov/about-us/news-updates/remarks-director-iancu-
intellectual-property-owners-46th-annual-meeting (quoting Interval Licensing LLC v. AOL, Inc.,
896 F.3d 1335, 1348 (Fed. Cir. 2018) (Plager, J., concurring in part and dissenting in part)).

3 Michael Risch, Nothing is Patentable, 67 FLA. L. REV. FORUM. 45, 45 (2015); see Robert
Merges, Symposium: Go ask Alice—what can you patent after Alice v. CLS Bank?, SCOTUSBLOG
(June 20, 2014, 12:04 PM), http://www.scotusblog.com/2014/06/symposium-go-ask-alice-what-can-
you-patent-after-alice-v-cls-bank/ (describing the patent-eligibility analysis in Alice Corp. Pty. Ltd. v.
CLS Bank Int’l, 573 U.S. 208 (2014), as “brief, yet somehow baroquely obscure”).

4 Peter S. Menell, Forty Years of Wondering in the Wilderness and No Closer to the Promised
Land: Bilski’s Superficial Textualism and the Missed Opportunity to Return Patent Law to Its
Technology Mooring, 63 STAN. L. REV. 1289, 1305 (2011).

5 Smart Sys. Innovations, LLC v. Chicago Transit Auth., 873 F.3d 1364, 1377 (Fed. Cir. 2017)
(Linn, J., concurring in part and dissenting in part).

6 Interval Licensing, 896 F.3d at 1348 (Plager, J., concurring in part and dissenting in part); see
also Berkheimer v. HP Inc., 890 F.3d 1369, 1377 (Fed. Cir. 2018) (Reyna, J., dissenting from denial
of rehearing en banc) (protesting that the court’s recent decisions “offer[] no meaningful guidance to
the bar, the government, or the public”); see also Kevin Emerson Collins, Bilski and the Ambiguity
of “An Unpatentable Abstract Idea,” 15 LEWIS & CLARK L. REV. 37, 39 (2011) (arguing that patent-
eligibility is an “‘I know it when I see it’ jurisprudence”).

7 Ryan Davis, Kappos Calls for Abolition of Section 101 of Patent Act, LAW360 (Apr. 12, 2016),
http://www.law360.com/articles/783604/kappos-calls-for-abolition-of-section-101-of-patent-act
(describing the doctrine as “a real mess, and you could actually use much stronger language than
that”).

8 573 U.S. 208 (2014).

[18:364 2019] The John Marshall Review of Intellectual Property Law 366

patent case.9 In one study, 1,274 out of 1,522 patents challenged under Alice, or 83.7
percent, were software patents.10 As the Federal Circuit has noted, “[c]omputer
software-related inventions—due to their intangible nature—can be particularly
difficult to assess under the abstract idea exception.”11

Some judges of the Federal Circuit would go much further. In one judge’s view,
“claims directed to software implemented on a generic computer are categorically not
eligible for patent.”12 The court itself has rejected such a broad view of subject-
matter exclusions to patentability.13 But there is an extensive literature going back
several decades debating whether software should be patentable at all.14

The question is more than just academic. The facts of software patenting are
grim: More than half of patents issued are software patents;15 they tend to stake
extremely broad claims, creating “thickets” of overlapping rights that deter follow-on
innovation;16 they account for most of the increase in patent litigation in recent
years, mostly by patent trolls;17 and patent trolling had cost the economy around
$500 billion by 2010, and surely much more since.18

I do not argue in this Article that software should be categorically ineligible for
patenting. Whatever the merits of that position, the law as it stands permits patents
on software and neither the Supreme Court nor the Federal Circuit has much

9 Id. at 2352 (explaining that the patent at issue required “generic computer implementation” of

an abstract idea).
10 Alice Through the Looking Glass 8 (2018) (on file with author), DOCKET NAVIGATOR,

http://brochure.docketnavigator.com/alice/.
11 Interval Licensing LLC v. AOL, Inc., 896 F.3d 1335, 1343 (Fed. Cir. 2018).
12 Intellectual Ventures I LLC v. Symantec Corp., 838 F.3d 1307, 1322 (Fed. Cir. 2016) (Mayer,

J., concurring).
13 See Interval Licensing, 896 F.3d at 1344 (reasoning that “[s]oftware can make non-abstract

improvements to computer technology just as hardware improvements can” (quoting Enfish LLC v.
Microsoft Corp., 822 F.3d 1327, 1335 (Fed. Cir. 2016))).

14 For just a few examples, see, e.g., Jonathan Stroud & Derek M. Kim, Debugging Software
Patents After Alice, 69 S.C.L. REV. 177 (2017); Lemley et al., supra note 1, at 1326–27; Michael
Risch, Everything Is Patentable, 75 TENN. L. REV. 591, 622 (2008); Robert A. Kreiss, Patent
Protection for Computer Programs and Mathematical Algorithms: The Constitutional Limitations on
Patentable Subject Matter, 29 N.M.L. REV. 31 (1999); GREGORY A. STOBBS, SOFTWARE PATENTS
(1995); Jur Strobos, Stalking the Elusive Patentable Software: Are There Still Diehr or Was It Just a
Flook?, 6 HARV. J.L. & TECH. 363 (1993); Pamela Samuelson, Benson Revisited: The Case Against
Patent Protection for Algorithms and Other Computer Program-Related Inventions, 39 EMORY L.J.
1025 (1990); Donald S. Chisum, The Patentability of Algorithms, 47 U. PITT. L. REV. 959 (1986).

15 Raymond Millien, Alice Who? Over Half the U.S. Utility Patents Issued Annually are Software
Related!, IPWATCHDOG (May 21, 2017), https://www.ipwatchdog.com/2017/05/21/alice-over-half-u-s-
utility-patents-issued-annually-software/id=83367/.

16 Mark A. Lemley, Software Patents and the Return of Functional Claiming, 2013 WIS. L. REV.
905, 906–07, 929.

17 Stroud & Kim, supra note 14, at 180 (citing U.S. GOV’T ACCOUNTABILITY OFF., GAO-16-490,
INTELLECTUAL PROPERTY: PATENT OFFICE SHOULD DEFINE QUALITY, REASSES INCENTIVES, AND
IMPROVE CLARITY 14, 20 (2016)); John R. Allison et al., Patent Quality and Settlement among Repeat
Patent Litigants, 99 GEO. L.J. 677, 708 (2011) (finding that patent trolls assert 64.3 percent of the
most-litigated patents).

18 Michael Meurer, James Bessen & Jennifer Ford, The Private and Social Costs of Patent
Trolls, 34 REGULATION 26, 26 (2012).

[18:364 2019] Abstraction in Software Patents (and How to Fix it) 367

appetite to change that.19 My inquiry here is more descriptive: Just why does
software pose such a challenge for patent-eligibility and the abstract-ideas doctrine?
What makes software inventions different from, say, mechanical inventions or
chemical inventions? And, perhaps most importantly, is there a way to fix software
patents?

To answer these questions, it’s necessary to start with a quick tour of the
doctrine itself—what it means for a patent claim to be impermissibly abstract. That
discussion occupies Part I of this Article. The doctrine is not entirely clear, to say the
least, but at least one strong emergent theme is that functional claiming—which, in
patent law, means claiming a bald result rather than how to achieve it—is
impermissible.20 More generally, the doctrine treats “abstract” as an antonym of
“concrete” or “specific.”21

Part II explores one reason software claims run afoul of the doctrine: computer
science is, by its own self-description, “a science of abstraction.”22 Programmers
model real-world concepts and entities in software by abstracting away irrelevant
details and leaving only those aspects necessary to manipulate them. Many software
programs, in other words, are just amalgamations of abstractions. A claim to such an
invention will naturally be prone to abstractness itself. The worst offenders are mere
“do it on a computer” claims, which describe some longstanding real-world practice,
add a computer, and seek monopoly rents.

But many software innovations don’t involve real-world concepts at all.
Consider, for instance, a new programming language or a better compression
algorithm—innovations that improve processes and products intrinsic to computers.
Claims to such innovations, too, often turn out to be impermissibly abstract. That’s
because programming a computer is, by design, a functional exercise—at one level of
abstraction or another, programmers tell the computer what to do, not how to do it.23
And if the invention is functionally defined, it must necessarily be claimed in
functional terms as well. I explore this second and perhaps more fundamental
reason that software claims tend to be abstract in Part III.

In Part IV, I explore and reject a common objection to software patents: that
software consists of algorithms, and algorithms are just math. That might mean one
of two things—that algorithms solve mathematical problems, or that algorithms

19 See, e.g., Alice, 573 U.S. 208, 223 (2014) (reaffirming that Diamond v. Diehr, 450 U.S. 175

(1981), which permitted software claimed in an industrial process, is good law); Finjan, Inc. v. Blue
Coat Sys., Inc., 879 F.3d 1299, 1304 (Fed. Cir. 2018).

20 See, e.g., Elec. Power Grp., LLC v. Alstom S.A., 830 F.3d 1350, 1356 (Fed. Cir. 2016)
(explaining that “the essentially result-focused, functional character of claim language has been a
frequent feature of claims held ineligible under § 101”). “Functional” can mean different things in
different IP contexts—from the perspective of copyright law, for instance, patents are supposed to
claim functionality, which copyright excludes. See Christopher Buccafuso & Mark A. Lemley,
Functionality Screens, 103 VA. L. REV. 1293, 1300, 1307 (2017). But from the internal perspective of
patent law, patentees have to claim the way the function is performed, and not merely the idea of
performing it. See Kevin Emerson Collins, Patent Law’s Authorship Screen, 84 U. CHI. L. REV. 1603,
1614 & n.43 (2017) (explaining that copyright screens out even—or especially—what patent “opt[s]
not to protect”).

21 Epic IP LLC v Backblaze, Inc., 2018 WL 6107029, at *3 (D. Del. Nov. 21, 2018) (Bryson, J.).
22 ALFRED V. AHO, JEFFREY D. ULLMAN, FOUNDATIONS OF COMPUTER SCIENCE: C EDITION 1

(1994).
23 See infra notes 73–79 and accompanying text.

[18:364 2019] The John Marshall Review of Intellectual Property Law 368

involve mathematical insights. Neither is a meaningful reason to deny patent
protection to algorithms. Even so, something like this objection underlies the
Supreme Court’s very first software-patent case, Gottschalk v. Benson.24

In fact, software patents that claimed actual algorithms, rather than vague
results, would be an enormous improvement over most software patents today.25 And
they can be claimed concretely, using what programmers call “pseudocode”—an
informal but precise language that programmers use to communicate algorithms
with each other. I therefore close by proposing that Benson be overruled, and that
software patents instead be required to claim an algorithm in pseudocode. That
would go a long way towards fixing software patenting—and bringing order to the
abstract-ideas doctrine.

II. THE ABSTRACT-IDEAS DOCTRINE: A QUICK TOUR

Section 101 of the Patent Act, which governs what sorts of inventions may be
patented, affords a “wide and permissive scope” for patent-eligibility.26 By its terms,
an inventor may patent any new and useful “process, machine, manufacture, or
composition of matter.”27 But from the earliest days of the patent system, the
Supreme Court has held that certain types of subject matter are ineligible for
patenting.28 The modern formulation is “[l]aws of nature, natural phenomena, and
abstract ideas”29—these things cannot be patented even if they fit within one of the
statutory categories.30

Of course, all inventions harness natural phenomena, all inventions are
governed by natural laws, and all inventions begin with an idea.31 To separate out
permissible invention from impermissible abstraction, the Supreme Court in Alice
announced a two-part test: First, courts must examine whether the claim is “directed
to a patent-ineligible concept”; and second, if so, they must determine whether it
contains an “inventive concept” that “transform[s]” it into a “patent-eligible
application.”32

24 409 U.S. 63 (1972).
25 Lemley, supra note 16, at 947.
26 Smart Sys. Innovations, LLC v. Chicago Transit Auth., 873 F.3d 1364, 1377 (Fed. Cir. 2017)

(Linn, J., concurring in part and dissenting in part); see Lemley, supra note 1, at 1328 (“[B]ecause
patent claims almost never fall outside of the four fundamental categories of § 101, when they do it
is noteworthy.”).

27 35 U.S.C. § 101 (2012).
28 See, e.g., Le Roy v. Tatham, 55 U.S. (14 How.) 156, 175 (1852).
29 Alice Corp. Pty. Ltd. v. CLS Bank Intern., 573 U.S. 208, 216 (2014) (quoting Ass’n for

Molecular Pathology v. Myriad Genetics, Inc., 569 U.S. 576, 589 (2013)). The tripartite distinction is
of relatively recent vintage and has changed even over that short time. It appeared first in
Gottschalk v. Benson as “[p]henomena of nature, . . . mental processes, and abstract intellectual
concepts.” 409 U.S. 63, 67 (1972). As recently as Bilski v. Kappos, the Court used “physical
phenomena” instead of “natural phenomena,” 561 U.S. 593, 601 (2010) (quotation marks omitted),
but the formulation appears to have stabilized as of Myriad and Alice.

30 Lemley et al., supra note 1, at 1328 (observing that these exclusions operate “irrespective of [a
claim’s] categorical status”).

31 Mayo Collaborative Servs. v. Prometheus Labs., Inc., 566 U.S. 66, 71 (2012).
32 Alice, 573 U.S. at 217, 221 (quoting Mayo, 566 U.S. at 72, 79).

[18:364 2019] Abstraction in Software Patents (and How to Fix it) 369

The first step acts as something of a high-pass filter: Claims that obviously
describe something concrete, like “a chip architecture [or] an LED display,” need not
be analyzed further.33 Software claims—even those ultimately held valid—often fail
this first step.34 The second step is harder to pin down. It is most often defined in
negative terms: a claim directed to an abstract idea must contain something “more
than ‘well-understood, routine, conventional activity.’”35 And somewhat orthogonal
to both these steps is the “underlying concern” that a patent not inordinately
“preempt”—that is, inhibit or prevent by laying claim to—too much follow-on
innovation.36

Alice arose in the context of a common sort of software claim—“do it on a
computer” claims.37 The patents at issue in Alice took an ordinary business
method—intermediated settlement—and simply claimed performing it on a
computer.38 The claims at issue in Bilski were similar.39 Five years after Alice, there
is little doubt that such claims are ineligible for patent. In Alice’s terms, they are
directed to the idea of performing the ordinary business method, and they claim no
inventive concept simply by performing it on an ordinary computer.40 Courts have
since expanded this strand of the doctrine to encompass not only business methods
but any “method of organizing human activity.”41

A related strand of the abstract-ideas doctrine is the bar on functional
claiming.42 Claims that “simply demand[] the production of a desired
result . . . without any limitation on how to produce that result” are directed to the

33 See Enfish LLC v. Microsoft Corp., 822 F.3d 1327, 1335 (Fed. Cir. 2016).
34 See, e.g., Berkheimer v. HP Inc., 881 F.3d 1360, 1369 (Fed. Cir. 2018); Bascom Global

Internet Servs., Inc. v. AT&T Mobility LLC, 827 F.3d 1341, 1353 (Fed. Cir. 2016); DDR Holdings,
LLC v. Hotels.com, L.P., 773 F.3d 1245, 1257 (Fed. Cir. 2014); but see, e.g., Enfish, 822 F.3d at 1337;
McRO Inc. v. Bandai Namco Games Am., 837 F.3d 1299, 1313 (Fed. Cir. 2016).

35 Affinity Labs of Texas, LLC v. DirecTV, LLC, 838 F.3d 1253, 1262 (Fed. Cir. 2016) (quoting
Mayo, 566 U.S. at 79).

36 See Mayo, 566 U.S. at 82; Lemley et al., supra note 1, at 1329 (explaining that exclusions to
patent-eligibility aim to “prevent[] patentees from claiming broad ownership over fields of
exploration rather than specific applications of those fields”).

37 Alice, 134 S. Ct. at 2358 (holding that claiming an abstract idea “while adding the words
‘apply it with a computer’” is not enough to be eligible for patenting); see Apple, Inc. v. Ameranth,
Inc., 842 F.3d 1229, 1243 (Fed. Cir. 2016) (“It is not enough to point to conventional applications and
say ‘do it on a computer.’”).

38 Alice, 573 U.S. at 223.
39 Bilski v. Kappos, 561 U.S. 593, 611 (2010).
40 See, e.g., Mortgage Grader, Inc. v. First Choice Loan Servs. Inc., 811 F.3d 1314, 1324–25 (Fed.

Cir. 2016); Versata Development Group v. SAP America, Inc., 793 F.3d 1306, 1333–34 (Fed. Cir.
2015); Intellectual Ventures I LLC v. Capital One Bank (USA), 792 F.3d 1363, 1367–69 (Fed. Cir.
2015).

41 See, e.g., In re Marco Guldenaar Holding B.V., No. 2017-2465, slip op. at 5 (Fed. Cir. Dec. 28,
2018); Bascom Global Internet Servs., Inc. v. AT&T Mobility LLC, 827 F.3d 1341, 1348 (Fed. Cir.
2016); Intellectual Ventures I LLC v. Capital One Bank (USA), 792 F.3d 1363, 1367 (Fed. Cir. 2015).

42 In theory, Congress addressed functional claiming in the 1952 Patent Act with a
compromise: “patentees could write their claim language in functional terms, but when they did so
the patent would not cover the goal itself, but only the particular means of implementing that goal
described by the patentee and equivalents thereof.” Lemley, supra note 16, at 907 (citing 35 U.S.C.
§ 112(f)). In practice, however, § 112(f) rarely applies unless a claim is written in expressly
functional terms—“means for” and “step for” performing a given function. Williamson v. Citrix
Online, LLC, 792 F.3d 1339, 1347–49 (Fed. Cir. 2015). In some sense, the abstract-ideas doctrine
has stepped in to fill the gap.

[18:364 2019] The John Marshall Review of Intellectual Property Law 370

abstract idea of performing that result.43 And, as with do-it-on-a-computer claims,
simply claiming that result performed on an ordinary computer or an ordinary
network is not inventive.44

Instead, what a patent must claim is “how the desired result is achieved.”45 This
sounds in the principle against disproportionate preemption: Claims that focus on a
bald result “capture[] ownership not of what [the patentee] built, but of anything that
achieves the same goal, no matter how different it is.”46 That is, they preempt all
follow-on and design-around invention. The bar on functional claiming is especially
relevant to software patents, because “100% of troll software patents and 50% of non-
troll software patents use functional claiming.”47

There are other strands of the doctrine, though they are less important for our
purposes. Claims to simply manipulating and reporting information are also often
held abstract.48 This principle has obvious ramifications for many software patents,
but is also not infrequently honored in the breach.49 Along similar lines, mental
steps or steps that can be performed with pencil and paper are abstract, as are
mathematical algorithms.50 I will have more to say about algorithms later in Part V,
but by and large, these other strands of reasoning largely buttress results that can be
reached with the bar against functional claiming alone.

III. COMPUTER SCIENCE: THE SCIENCE OF ABSTRACTION

Why are software claims prone to abstractness? The Federal Circuit’s
explanation is that software, by its very nature, is intangible.51 But so are all process
claims, which are clearly permitted by the statute.52 Another explanation is that
“software is an abstract technology.”53 This type of blanket assertion, with little
explanation, is common.54 But what does it mean?

43 See, e.g., Interval Licensing LLC v. AOL, Inc., 896 F.3d 1335, 1345 (Fed. Cir. 2018); Two-Way

Media Ltd. v. Comcast Cable Commc’ns, LLC, 874 F.3d 1329, 1337 (Fed. Cir. 2017).
44 Interval Licensing, 896 F.3d at 1346; Apple, Inc. v. Ameranth, Inc., 842 F.3d 1229, 1244 (Fed.

Cir. 2016).
45 Elec. Power Grp., LLC v. Alstom S.A., 830 F.3d 1350, 1355 (Fed. Cir. 2016); see Interval

Licensing, 896 F.3d at 1338.
46 Lemley, supra note 16, at 908.
47 Id. at 920 n.65.
48 See Interval Licensing, 896 F.3d at 1344–45 (collecting cases); SAP Am., Inc. v. Investpic,

LLC, 898 F.3d 1161, 1167 (Fed. Cir. 2018).
49 See, e.g., SRI Int'l, Inc. v. Cisco Sys., Inc., No. 2017-2223 (Fed. Cir. Mar. 20, 2019), slip op. at

9–10; id. at 3 (Lourie, J., dissenting) (“This case is hardly distinguishable from Electric Power
Group.”); Core Wireless Licensing S.A.R.L. v. LG Elecs., Inc., 880 F.3d 1356, 1362–63 (Fed. Cir.
2018).

50 Synopsys, Inc. v. Mentor Graphics Corp., 839 F.3d 1138, 1145 (Fed. Cir. 2016); Intellectual
Ventures I LLC v. Capital One Bank (USA), 792 F.3d 1363, 1368 (Fed. Cir. 2015); DDR Holdings,
LLC v. Hotels.com, L.P., 773 F.3d 1245, 1256 (Fed. Cir. 2014).

51 Interval Licensing LLC v. AOL, Inc., 896 F.3d 1335, 1343 (Fed. Cir. 2018).
52 35 U.S.C. § 101 (2012).
53 JAMES BESSEN & MICHAEL J. MEURER, PATENT FAILURE: HOW JUDGES, BUREAUCRATS, AND

LAWYERS PUT INNOVATORS AT RISK 187 (2008) (emphasis removed).
54 See, e.g., Stroud & Kim, supra note 14, at 205 (observing that “software patents, by their very

nature, generally have broad, ambiguous claims”); Note, Everlasting Software, 125 HARV. L. REV.

[18:364 2019] Abstraction in Software Patents (and How to Fix it) 371

An important clue is found in Alfred Aho and Jeffrey Ullman’s classic
introductory computer-science textbook, Foundations of Computer Science: C
Edition.55 The very first chapter is titled “Computer Science: The Mechanization of
Abstraction.”56 Its explanation of what that means is worth quoting in full:

[F]undamentally, computer science is a science of abstraction—creating the
right model for thinking about a problem and devising the appropriate
mechanizable techniques to solve it. Every other science deals with the
universe as it is. The physicist’s job, for example, is to understand how the
world works, not to invent a world in which physical laws would be simpler
or more pleasant to follow. Computer scientists, on the other hand, must
create abstractions of real-world problems that can be understood by
computer users and, at the same time, that can be represented and
manipulated inside a computer.57

In other words, software by its very nature deals in representations several
times removed from physical reality.58 For one example, Aho and Ullman describe an
algorithm for scheduling a university’s final exams.59 The only detail relevant to
whether two exams can be scheduled at the same time is whether they have a
student in common.60 Thus, that’s all the algorithm uses to model each class—the
binary relationships, student in common or not, between it and every other class.61
Importantly, the algorithm abstracts away all other details, like how many students
each pair of classes has in common, who the students are, how many credits the class
is worth, or when the class itself is scheduled.62 Those are real attributes of the class
in the real world—what programmers call “meatspace”—but they don’t matter for
solving the exam-scheduling problem.

 Or consider an example more immediately relevant to your author: word-
processing programs. Microsoft Word represents a document as a window into a
page or so of text, albeit with none of the physicality of paper and ink (let alone the
rest of the document). That’s because none of those things matter to solving the

1454, 1459–60 (2012). Bessen and Meurer do explain that “many of the standard terms of art are
themselves abstract ideas that are meant to apply to a wide variety of possible applications,”
BESSEN & MEURER, supra note 53, at 195, but that seems circular and is not even necessarily true.
See Lemley, supra note 16, at 930 (explaining that software doesn’t really have standard terms of
art the way chemistry or biotechnology do).

55 AHO & ULLMAN, supra note 22.
56 Id. at 1.
57 Id.
58 Aho and Ullman are far from alone in observing that abstraction is fundamental to computer

science. See also, e.g., Jacob C. Perrenet, Levels of Thinking in Computer Science: Development in
Bachelor Students’ Conceptualization of Algorithm, 15 EDUC. & INFO. TECHS. 87, 88–89 (2010)
(summarizing many theories of abstraction in computer science from different computer scientists
and mathematicians); Peter J. Denning et al., Computing as a Discipline, 32 COMM. OF THE ACM 9,
10 (1989) (“[C]omputer science focuses on analysis and abstraction; computer engineering on
abstraction and design.”).

59 AHO & ULLMAN, supra note 22, at 1.
60 See id. at 1–3.
61 See id.
62 See id.

[18:364 2019] The John Marshall Review of Intellectual Property Law 372

problem at hand—showing me what I’m writing so I can edit it. So, as with the
exam-scheduling software, the software abstracts them away.

Now consider what a claim on either of these examples would look like. It would
recite a “document” or a “class,” but those words would refer not to real-world
documents or classes but to software models of them—abstractions. The same goes
for real-world software patents, with words like “media product” and “sponsor
message,”63 “credit card” and “debit card,”64 or “mail object” and mail “sender.”65
Those words in those claims refer to software abstractions, not entities in the real
world. On top of that, patent claims are meant to abstract out irrelevant details of
specific embodiments and retain only the key aspects that make the claim novel and
nonobvious.66 If you invent an improved car seat, and the improvement is in how the
headrest responds to a rear-end collision, you don’t need to specify in the claims
whether the seat is covered with cloth or leather.67 You can abstract away that
irrelevant detail. But if you invent an abstract model of the real world, and then you
abstract away even more of it in the claims, you practically have a recipe for
irredeemable abstractness.

That largely explains why do-it-on-a-computer software claims are abstract
(and, after Alice, categorically ineligible for patenting). But that’s far from the only
type of software innovation (if indeed manipulating models of real-world objects is
innovative at all). There are also innovations like webpages and memory systems,
which are wholly intrinsic to computers and model nothing in the real world;
innovations like faster algorithms for sorting and searching data, whose value lies
not in manipulating particular abstractions but in how they are manipulated; and
innovations like a more compact way to store video data, which improve the way a
real-world entity is modeled. Doctrinally, Alice marks this distinction as the line
between do-it-on-a-computer claims and inventions that “improve[] an existing
technological process” or “improve the functioning of the computer itself.”68

But claims in that latter class, too, are often irredeemably abstract.

63 U.S. Patent 7,346,545, held ineligible in Ultramercial, Inc. v. Hulu, LLC, 772 F.3d 709 (Fed.

Cir. 2014).
64 U.S. Patents Nos. 7,566,003, 7,568,617, 8,505,816, and 8,662,390, held ineligible in Smart

Sys. Innovations, LLC v. Chicago Transit Auth., 873 F.3d 1364 (Fed. Cir. 2017).
65 U.S. Patents Nos. 7,814,032, 7,818,268, 8,073,787, 8,260,629, 8,429,093, 8,910,860, and

9,105,002, held ineligible in Secured Mail Sols. LLC v. Universal Wilde, Inc., 873 F.3d 905 (Fed. Cir.
2017).

66 Golden, supra note 1, at 1766–70; see also Risch, supra note 3, at 53 (“Practically speaking,
. . . [e]very invention will look like an abstract idea or natural phenomenon at some level.”).

67 See, e.g., U.S. Patent No. 6,017,086.
68 Alice Corp. Pty. Ltd. v. CLS Bank Intern., 134 S. Ct. 2347, 2358, 2359 (2014); see, e.g., Enfish

LLC v. Microsoft Corp., 822 F.3d 1327, 1338 (Fed. Cir. 2016) (reasoning that even though the
claimed invention “r[an] on a general-purpose computer,” it was patent-eligible because it was
“directed to an improvement in the functioning of a computer”); DDR Holdings, LLC v. Hotels.com,
L.P., 773 F.3d 1245, 1257 (Fed. Cir. 2014) (holding claims patent-eligible because they were
“necessarily rooted in computer technology in order to overcome a problem specifically arising in the
realm of computer networks”).

[18:364 2019] Abstraction in Software Patents (and How to Fix it) 373

IV. SOFTWARE: IT’S FUNCTIONAL ALL THE WAY DOWN

The abstract nature of computer science doesn’t end at modeling real-world
things like documents and bank accounts. To the programmer, the computer itself is
abstracted away. The programmer doesn’t direct the flow of the electrons through
the silicon; she doesn’t manipulate transistors, gates, circuits, or registers; by and
large, she doesn’t know anything about the machine on which her code will run.69
No—she merely directs the computer to accomplish a certain result.

Consider this simple snippet of code, the classic first program one writes when
learning the C programming language70:

int	main(void)	{	
printf(“Hello,	world!”);	

}

This program displays “Hello, world!” on the screen. Don’t sweat the details—
the first and last lines merely designate where to start and end execution. All the
magic is in the second line. But that line doesn’t do any displaying, exactly. Before
the program can be run, it must be translated into executable form by another
program, known as a compiler.71 So all that second line does is tell the compiler the
result—displaying “Hello, world!”—that the programmer would like to produce.72

Importantly, the programmer has no idea how the desired result is produced.
That ignorance is not happenstance or a contingent fact. By design, the programmer
describes results and the compiler translates her description into machine-language
commands that do what she wants done.73 This design allows the same code to be
compiled and run on dozens of architectures, generating wildly different machine
code for each,74 yet ultimately displaying “Hello, world!” on them all. It’s a step
toward accomplishing one of the most atavistic aspirations of computer science—
“write once, run anywhere.”75

69 There are exceptions, of course. It is possible, if rare, to write code directly in assembly

language—ostensibly the language of the processor itself. But modern processors rewrite that too,
so that even machine code becomes nothing more than commands to the system to effect a certain
result.

70 See “Hello, World!” program, WIKIPEDIA, https://en.wikipedia.org
/w/index.php?title=%22Hello,_World!%22_program&oldid=879818585 (last visited Jan. 23, 2019).

71 ALFRED V. AHO, MONICA S. LAM, RAVI SETHI, & JEFFREY D. ULLMAN, COMPILERS:
PRINCIPLES, TECHNIQUES, & TOOLS 1 (2d ed. 2007) (“[B]efore a program can be run, it must first be
translated into a form in which it can be executed by a computer The software systems that do
this translation are called compilers.”).

72 See id. (“Programming languages are notations for describing computations to people and to
machines.” (emphasis added)).

73 See id. at 1–3.
74 You can see this in action at the excellent Compiler Explorer resource. The x86-64 compiler

output of the above code is available at https://godbolt.org/z/CvUtAu, and the arm64 version is
available at https://godbolt.org/z/PvdwxY.

75See Write once, run anywhere, WIKIPEDIA,
https://en.wikipedia.org/wiki/Write_once,_run_anywhere (last visited Aug. 1, 2018); JavaSoft Ships
Java 1.0, TECH INSIDER, https://tech-insider.org/java/research/1996/0123.html (last visited July 25,
2019). The phrase originated in the mid-1990s with the release of the Java programming language,
but the idea dates back at least to the 1970s. In computer science, the phrase typically refers to a

[18:364 2019] The John Marshall Review of Intellectual Property Law 374

What’s more, code has this property at every level of abstraction.76 Drill down to
the very bottom layer of software—the machine-language loads, moves, compares,
and other operations77—and all you’ll see are commands to the hardware to
accomplish a result (albeit a small one) by whatever means are available. To be sure,
these instructions cause a “series of gates in a computer chip to open and close in a
particular sequence,” ultimately creating the desired effect.78 But there’s no physical
connection between the instruction and the result, as evinced by the fact that the
same instructions can accomplish the same result on a 1985 Intel 80386 and a 2018
Intel Core i7-8086K, even though they have radically different architectures. Code is
thus intrinsically functional. At every level of abstraction, it describes results, and
by design, it doesn’t much care “by what process or machinery the result is
accomplished.”79 It’s functional all the way down.80

Compare this to patent law’s “archetypal subject matter,” the mechanical and
chemical arts.81 There, claim language typically refers to physical structure—
machinery and chemicals.82 That makes it relatively easy to tell when claim
language is referring to functionality in the abstract—just look for a distinct absence
of physical referents.83 Software programs, however, are not physical machines but
“virtual” ones; they’re machines constructed “in the medium of text”—i.e., descriptive
code.84 So no matter at what level of abstraction a software patentee claims her
invention, the referents of her claim language will still be functional, not physical.85
Little wonder, then, that software claims often have an “essentially result-focused,

specific type of platform independence involving a virtual machine that abstracts away the
hardware entirely, see AHO, supra note 71, at 2–3, 507–08, but it can describe compiling to different
hardware targets as well.

76 Kip Werking, The Illogic of the Algorithm Requirement for Software Patent Claims,
IPWATCHDOG (Oct. 12, 2012, 7:20 AM), http://www.ipwatchdog.com/2012/10/12/the-illogic-of-the-
algorithm-requirement-for-software-patent-claims/id=28635/. Werking’s solution is to submit to
unbridled functionalism in software claims, which I resist for the reasons described in Part V.B.

77 AHO, supra note 71, at 512–13 (describing some basic machine-language instructions present
on most platforms).

78 See Lemley, supra note 16, at 969.
79 Cf. O’Reilly v. Morse, 56 U.S. (15 How.) 62, 113 (1854). Of course, sometimes—as in device

drivers—code does care about the machinery involved. But if a patent claim involves a device
driver, typically, it also involves the device, thus claiming hardware as well as function.

80 See Kevin Emerson Collins, Patent Law’s Functionality Malfunction and the Problem of
Overbroad, Functional Software Patents, 90 WASH. U.L. REV. 1399, 1402 (2013).

81 See Mark P. McKenna & Christopher Jon Sprigman, What’s In, and What’s Out: How IP’s
Boundary Rules Shape Innovation, 30 HARV. J.L. & TECH. 491, 502 (2017).

82 See id.
83 Id. at 509. Even process claims “prototypically refer[] to industrial processes, like methods

for manufacturing a drug.” Id.
84 See Pamela Samuelson, Functionality and Expression in Computer Programs: Refining the

Tests for Software Copyright Infringement, 31 BERKELEY TECH. L.J. 1215, 1273 (2017) (quoting
Pamela Samuelson, et al., A Manifesto Concerning the Legal Protection of Computer Programs, 94
COLUM. L. REV. 2308, 2316 (1994)).

85 Lemley, supra note 16, at 960. Professor Lemley argues that even physical objects are often
characterized by their functions—consider the “seat,” the “jackhammer,” or even the screwdriver.
Id. But even though we label these physical objects using functional terms, we all understand that
the word “screwdriver” refers to a particular class of physical tools that drive a screw by fitting a
particularly shaped driver bit into a matching screw head, and not in any other way.

[18:364 2019] Abstraction in Software Patents (and How to Fix it) 375

functional character.”86 Just like software code, software claims are intrinsically
functional.

The upshot is that abstractness in software claims is not a question of kind.
Software claims cannot be categorized as “functional” or “not functional.” Software
claims are always functional. But they can be made concrete enough for patenting by
adding in enough implementation detail.87 How much is enough? That’s the 500-
billion-dollar question.88

V. ALGORITHMS: NOT THE PROBLEM, BUT THE SOLUTION

One common objection to software patents is that software is “just math.”89 This
is an almost metaphysical objection—that allowing software to be patented is some
sort of category mistake. And it has intuitive appeal. Software is made up of
algorithms, and students are first introduced to that word in their mathematics
classes. What’s more, the word “algorithm” comes from the Latinized name of a 9th
century mathematician, Muḥammad ibn Musa al-Khwarizmi.90 And computer
science courses on algorithms are also generally math-intensive.91 If nothing else,
software and mathematics are deeply related.

But look past the intuition, and the claim that algorithms are “just math”
doesn’t hold water. It might conceivably mean one of two things: that algorithms
solve mathematical problems, or that algorithms involve math. Both are true to
some extent, but neither is a good reason to deny patents to algorithms. In its very
first software-patent case, however, the Supreme Court embraced that notion, and
software patentees have been scared off claiming algorithms ever since.92 That was a
mistake. In fact, claiming algorithms might just be the solution to the problem with
software patents.

86 See Electric Power Group, LLC v. Alstom S.A., 830 F.3d 1350, 1356 (Fed. Cir. 2016).
87 See, e.g., Data Engine Technologies LLC v. Google LLC, 906 F.3d 999, 1009 (Fed. Cir. 2018)

(contrasting claims that covered a “specific implementation” and thus were patent-eligible with one
claim that did not and thus was not); McRO Inc. v. Bandai Namco Games Am., 837 F.3d 1299, 1315
(Fed. Cir. 2016).

88 See supra note 18 and accompanying text; see also BESSEN & Meurer, supra note 54, at 200
(arguing that “software patents might be particularly prone to strategic use of vague language by
applicants to gain undeserved scope”).

89 See, e.g., Timothy B. Lee, Why a 40-year-old SCOTUS ruling against software patents still
matters today, ARS TECHNICA (July 21, 2018, 1:15 PM),
https://arstechnica.com/features/2018/06/why-the-supreme-courts-software-patent-ban-didnt-last/
(quoting Mark Lemley); Katherine Noyes, It’s Clear Why Software Patents Need to Disappear, PC
WORLD,
https://www.pcworld.com/article/238173/its_clear_why_software_patents_need_to_disappear.html
(last visited Aug. 16, 2011).

90 JOHN L. ESPOSITO, THE OXFORD HISTORY OF ISLAM 188 (2000). The word “algebra,” too, can
be attributed to al-Khwarizmi—it comes from the name of his seminal treatise on mathematics. See
id. at 186–88.

91 See, e.g., THOMAS H. CORMEN ET AL., INTRODUCTION TO ALGORITHMS xv (3d ed. 2009).
92 See infra notes 114–116 and accompanying text.

[18:364 2019] The John Marshall Review of Intellectual Property Law 376

A. Just math? Not quite.

One of the oldest algorithms in common use is the Sieve of Eratosthenes, which
can be used to find the prime numbers between 1 and any natural number n.93
Students often learn it in elementary or middle school. Here are the steps:

1. Write down all the integers from 1 to n.
2. Cross out all integers divisible by 2.
3. Find the smallest remaining integer greater than 2.
4. Cross out all integers divisible by it.
5. Continue until you reach 𝑛.
6. All remaining integers are prime numbers.94

Another well-known example is Euclid’s algorithm for finding the greatest
common divisor of two natural numbers.95 These algorithms plainly solve
mathematical problems. So do many algorithms in the classic computer science
tome, Introduction to Algorithms.96

But many do not. The “most fundamental problem in the study of algorithms” is
sorting—reordering the elements in a set of records from lowest to highest according
to some measurement or value (age, account number, and so on).97 The only
mathematical operation involved, if it can be called that, is comparison—less than
and greater than.98 In fact, algorithms are used to do all sorts of things other than
solve math problems. They’re used to store data,99 to search efficiently,100 to figure
out the best chess move,101 and to multitask several programs running at the same
time102—for just a few examples. In general, an algorithm is simply “a collection of
simple instructions for carrying out some task.”103 So recipes, driving directions,
IKEA instructions, knitting patterns—all these things are algorithms.104

To be sure, an algorithm might involve math, and many of the algorithms
mentioned above do. Consider Google’s PageRank, the algorithm Google first used to
“measure the relative importance of web pages.”105 The gist of the algorithm is that
pages receive a higher ranking if other pages with a high ranking link to them.106 A

93 See THEONI PAPPAS, THE JOY OF MATHEMATICS: DISCOVERING MATHEMATICS ALL AROUND

YOU 100–01 (1989).
94 Id.
95 See C. STANLEY OGILVY & JOHN T. ANDERSON, EXCURSIONS IN NUMBER THEORY 27–29

(Dover ed. 1988).
96 See generally CORMEN, supra note 91 (explaining hundreds of algorithms to solve a variety of

problems in mathematics).
97 See id. at 147–48.
98 See, e.g., id. at 17 (describing “insertion sort,” the method many people intuitively use to sort

a hand of playing cards).
99 Id. at 253 (describing “hash tables,” an efficient data structure for storing and retrieving

records).
100 Id. at 39 (describing “binary search”).
101 See STUART RUSSELL & PETER NORVIG, ARTIFICIAL INTELLIGENCE: A MODERN APPROACH

163–67 (3d ed. 2010) (describing the “minimax” algorithm).
102 See ABRAHAM SILBERSCHATZ ET AL., OPERATING SYSTEM CONCEPTS 266–77 (9th ed. 2013).
103 MICHAEL SIPSER, INTRODUCTION TO THE THEORY OF COMPUTATION 182 (3d ed. 2013).
104 See id.
105 Lawrence Page et al., The PageRank Citation Ranking: Bringing Order to the Web 2 (1998),

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf.
106 Id. at 2–3.

[18:364 2019] Abstraction in Software Patents (and How to Fix it) 377

formal description of that process certainly involves some math, even if it’s mostly
arithmetic.107 But there’s also math involved in baking—in measuring the flour,
scaling the recipe for more or fewer people, calculating cooking time based on
weight—and no one says baking is “just math.” What matters are the search results
and the bread, respectively.

More to the point, math is involved in all sorts of inventions that are plainly
eligible for patent. For example, rock climbers use camming devices to attach rope to
the wall for protection.108 These “cams” work because their surface has a particular,
mathematically defined curvature that exerts maximum force into the rock.109 And
yet even the most ardent proponent of the “software is just math” position must
admit that despite the involvement of mathematics, cams can be patented.110

Or, to think about it another way, patenting math is disfavored for a specific
reason—because granting private monopolies on the “building blocks of human
ingenuity” might “tend to impede innovation more than it would tend to promote
it.”111 That makes sense for foundational mathematical relationships like eπi + 1 =
0,112 or basic algorithms like the Sieve of Eratosthenes, or even sorting algorithms,
which are often used as “key subroutines” in all sorts of applications.113 But that
reasoning has much less purchase when math is merely involved, be it in a rock-
climbing cam device or a webpage search algorithm.

B. Pseudocode claims.

The conflation of algorithms with math has had a significant and harmful effect
on the development of software patent law and the quality of software patents.
When the Supreme Court first considered software patents in Gottschalk v. Benson,
it assumed that algorithms were only for solving mathematical problems and
therefore that patents on algorithms were categorically impermissible.114 A decade
later in Diamond v. Diehr, the Court used the words “mathematical formula” and

107 See generally id. at 2–6. Analyzing algorithms for speed and space efficiency can involve

much more complicated math. See CORMEN, supra note 91, at 150.
108 See, e.g., U.S. Patent No. 4,184,657, at 1:7–11.
109 See id. at 3:45–60 (teaching that the cam surface must be shaped so that “the line of action

through the contact point [of the cam surface with the rock wall] and the axis of the spindle should
always be less than 78° to the longitudinal axis of the support bar”).

110 Cf. Timothy B. Lee, Software Is Just Math. Really., FORBES (Aug. 11, 2011, 2:29 PM),
https://www.forbes.com/sites/timothylee/2011/08/11/software-is-just-math-really/ (“A computer

program is a sequence of symbols represented by strings of 1s and 0s. A physical object is a
collection of atoms. The distinction couldn't be clearer or more fundamental.”).

111 See Alice Corp. Pty. Ltd. v. CLS Bank Intern., 134 S. Ct. 2347, 2354 (2014); Mayo
Collaborative Servs. v. Prometheus Labs., Inc., 132 S. Ct. 1289, 1293 (2012) (quoting Gottschalk v.
Benson, 409 U.S. 63, 67 (1972)).

112 This is known as Euler’s identity and is considered one of the most beautiful relationships in
mathematics. See James Gallagher, Mathematics: Why the brain sees maths as beauty, BBC NEWS
(Feb. 13, 2014), https://www.bbc.com/news/science-environment-26151062.

113 See CORMEN, supra note 91, at 148.
114 Gottschalk v. Benson, 409 U.S. 63, 65, 72 (1972); see Julie E. Cohen & Mark A. Lemley,

Patent Scope and Innovation in the Software Industry, 89 CAL. L. REV. 1, 8 (2001) (“Mathematical
algorithms (not just formulae) were declared non-patentable subject matter in an early Supreme
Court case, Gottschalk v. Benson.”).

[18:364 2019] The John Marshall Review of Intellectual Property Law 378

“algorithm” interchangeably, and reaffirmed that algorithms, like laws of nature,
could not be the subject of a patent.115

Even though Diehr actually weakened that prohibition in practice, the die was
cast: Software innovators understood that “being branded an algorithm was the kiss
of death.”116 To avoid “being labeled an algorithm or looking too much like math,”
they began to claim their innovations in plain English—by the result they
accomplished, rather than the technical algorithm used to accomplish it.117 In other
words, the bar on claiming algorithms created the problem of excessive functional
claiming in software patents.118

Professor Lemley has argued persuasively that most of the problems with
software patents stem from “broad functional claiming of software inventions.”119 In
my own experience as a computer scientist and a patent litigator, I have come to
agree. And the opposite of claiming functions, for software, is claiming algorithms.
The way to fix software patents, then, is to require that they disclose the algorithms
used to achieve the results they claim, and to limit their reach to those algorithms
and their equivalents.120 Ironically, that means that Benson—which ultimately held
the software patent at issue ineligible121—should be overruled, at least in part.

But, as I argued above, software claims are necessarily functional. There is no
clear boundary between claiming software ends and software means. Claim
language at the level of machine-language commands would be no use to anyone and
would still describe results.122 More realistically, even actual source code is probably
too granular a level of detail for patent claims. So what is the right level?

There are no easy answers,123 but a good first step would be to require that
software claims be written in “pseudocode”—the loosely defined notation
programmers use to communicate algorithms to others in the field.124 The
description of pseudocode in Introduction to Algorithms is useful:

What separates pseudocode from “real” code is that in pseudocode, we
employ whatever expressive method is most clear and concise to specify a
given algorithm. Sometimes, the clearest method is English, so do not be
surprised if you come across an English phrase or sentence embedded
within a section of “real” code. Another difference between pseudocode and
real code is that pseudocode is not typically concerned with issues of
software engineering. Issues of data abstraction, modularity, and error

115 Diamond v. Diehr, 450 U.S. 175, 186 (1981).
116 ROBIN FELDMAN, RETHINKING PATENT LAW 108 (2012).
117 Id. at 108–09.
118 Lemley, supra note 16, at 924–25 n.85.
119 Id. at 908.
120 See id. at 927; see also Randall M. Whitmeyer, Comment, A Plea for Due Processes: Defining

the Proper Scope of Patent Protection for Computer Software, 85 NW. U.L. REV. 1103, 1106 (1991)
(“[I]n the computer software context only narrow algorithms, as the term is understood by computer
scientists, should be patentable.”).

121 Gottschalk, 409 U.S. at 72–73.
122 See supra notes 76–79 and accompanying text.
123 See Lemley, supra note 16, at 961.
124 See CORMEN, supra note 91, at 3.

[18:364 2019] Abstraction in Software Patents (and How to Fix it) 379

handling are often ignored in order to convey the essence of the algorithm
more concisely.125

Pseudocode, in other words, conveys just enough detail to enable a programmer
to implement the algorithm in real code.126

An example might help make my proposal more concrete (so to speak). This is
the pseudocode for “insertion sort,” one way to sort a list of numbers:

INSERTION-SORT(A)
1 for j = 2 to A.length
2 key = A[j]
3 i = j – 1
4 while i > 0 and A[i] > key
5 A[i + 1] = A[i]
6 i = i – 1
7 A[i + 1] = key127

This code cannot be compiled or executed on any machine. It just describes to

programmers the way—the specific, concrete way—that the insertion-sort algorithm
works. In plain English, this is what it does: first, it compares the first number in
the list with the second. If the second is smaller, it swaps them. Either way, now the
first two numbers in the list are sorted relative to each other. It then compares each
number in the rest of the list with those to its left and moves the ones that are bigger
one space to the right, which opens up a space into which it drops the number being
sorted—in between the biggest element smaller than it and the smallest element
bigger than it.128 Plainly, there’s math involved in executing this algorithm, but the
algorithm itself isn’t math—it’s just moving things around. There’s no metaphysical
reason it can’t be patented.

Now compare that pseudocode with the way a patent might claim it, especially
under pre-Alice standards:

A method of sorting numbers in a list, comprising:
moving each number to a position within such list, wherein:

said same number is greater than all numbers in positions prior to such
position, and
said same number is lesser than all numbers in positions subsequent to
such position.

That “claim” correctly describes the desired result, but it doesn’t actually
disclose anything about how to move each number to the desired position. In fact, it
could cover any of the myriad ways of sorting a list of numbers.129 It’s a classic
abstract idea—it describes a result and “it matters not by what process or machinery

125 Id. at 17.
126 Id. at 3.
127 Id. at 18.
128 Id. at 18–20.
129 See CORMEN, supra note 91, at 147–212 (describing several other sorting algorithms).

[18:364 2019] The John Marshall Review of Intellectual Property Law 380

the result is accomplished.”130 Still, it’s wordy enough that a beleaguered patent
examiner might just let it slide.131

On the other hand, the pseudocode above doesn’t include every last detail
necessary to execute the algorithm either. Both it and the mock claim are in some
sense functional. But pseudocode is how programmers communicate their algorithms
to each other. Its purpose is to convey the “structure” of an algorithm in just enough
detail to enable other programmers to “implement it in the language of [their]
choice.”132 So if a programmer wants a patent monopoly on her algorithm, that’s also
how she should disclose the scope of that monopoly to the world.133

A coda to this proposal: requiring that software claims be written in pseudocode
might make for a right with very “thin” scope.134 So under the dominant paradigm in
which claims stake out the very edge of the patent monopoly, known as “peripheral
claiming,” it would incentivize patentees to claim every trivial variation on their
algorithm, which would be good for no one but the patent lawyers.135 Instead, the
tradeoff should be this: you claim your algorithms in “thin” pseudocode, but you get a
“thick” doctrine of equivalents in return.136 For algorithmic inventions, which can be
implemented in an infinite variety of ways, this return to a sort of “central claiming”
is a natural fit.137 And in addition to the carrot of a thick doctrine of equivalents, an
appropriate stick can be found in Professor Lemley’s proposal for patents written
under the current rules: limit functional claim language—not just explicit “means
for” and “step for” elements, but all language that, fairly evaluated, describes ends
rather than means—to algorithms actually disclosed in the specification, if any.138 In

130 Cf. O’Reilly v. Morse, 56 U.S. (15 How.) 62, 113 (1854).
131 For some similarly egregious examples, see U.S. Patent No. 8,688,085 cl. 14, invalidated in

Affinity Labs of Tex., LLC v. Amazon.com, Inc., 838 F.3d 1266 (Fed. Cir. 2016); U.S. Patent No.
6,384,850 cl. 1, invalidated in Apple, Inc. v. Ameranth, Inc., 842 F.3d 1229 (Fed. Cir. 2016); or U.S.
Patent No. 6,038,295 cl. 17, invalidated in In re TLI Commc’ns LLC Patent Litig., 823 F.3d 607 (Fed.
Cir. 2016).

132 CORMEN, supra note 91, at 3.
133 See PSC Computer Prods., Inc. v. Foxconn Int’l, Inc., 355 F.3d 1353, 1358 (Fed. Cir. 2004)

(“[T]he claim provides notice as to the scope of the invention.”); Mark A. Lemley & Mark P.
McKenna, Scope, 57 WM. & MARY L. REV. 2197, 2202 (2016) (explaining that “scope” is “the range of
things the IP right lawfully protects against competition”).

134 Cf., e.g., Apple Computer, Inc. v. Microsoft Corp., 35 F.3d 1435, 1443 (9th Cir. 1994)
(discussing “broad” versus “thin” copyrights on software).

135 See Dan L. Burk & Mark A. Lemley, Fence Posts or Sign Posts? Rethinking Patent Claim
Construction, 157 U. PENN. L. REV. 1743, 1745–46, 1769–70 (2009) (explaining peripheral claiming).
For just one example of this type of trivial variation, a patentee could replace all iterative loops with
recursions, or vice versa. See generally Olin Shivers, The Anatomy of a Loop: A story of scope and
control, PROCEEDINGS OF THE TENTH ACM SIGPLAN INTERNATIONAL CONFERENCE ON FUNCTIONAL
PROGRAMMING 2 (2005) (explaining that any iterative algorithm can be rewritten as a recursive
algorithm).

136 The doctrine of equivalents permits a patentee to expand the scope of her claim to cover a
defendant’s product that differs from the patented invention in only a minor respect.” Burk &
Lemley, supra note 135, at 1763. The doctrine has been largely vitiated as peripheral claiming and
claim construction have come to dominate the reach of the patent monopoly. Id. at 1763–66.

137 On the relationship between central claiming and a thick doctrine of equivalents, see id. at
1772 (“[M]odern courts engaged in doctrine of equivalents analysis follow a form of central claiming
while denying that they do so.”).

138 See Lemley, supra note 16, at 943–49.

[18:364 2019] Abstraction in Software Patents (and How to Fix it) 381

other words, either you claim pseudocode and get its equivalents, or you claim
functions and get only what you disclose in the specification.

VI. CONCLUSION

Software is hard for patent law. From tip to toe, it’s an abstract, functional
enterprise. But at the same time, there plainly is innovation in software, the sort of
innovation we usually encourage with patent protection. And as I have shown,
software innovation can be specified concretely enough to grant it protection, so
there’s no metaphysical reason not to. There might be other reasons—perhaps the
costs just outweigh the benefits.139 But much of those costs come from the presently
abstract nature of software claims.140 And my suggestion in this Article—to require
that software claims be written in pseudocode—would go a long way toward solving
the problem of abstraction in software patents.

139 IP rights incur substantial social costs, which can only be justified if outweighed by the

incremental innovation encouraged. Christopher Buccafuso, Mark A. Lemley, & Jonathan S. Masur,
Intelligent Design, 68 DUKE L.J. 75, 87, 89 (2018); John M. Golden, Patentable Subject Matter and
Institutional Choice, 89 TEX. L. REV. 1041, 1070–73 (2011). Those costs might be especially high,
and especially unjustified, for software innovation. Cohen & Lemley, supra note 114, at 5–6 & n.5,
41, 46; Lemley, supra note 16, at 935; Lemley et al., supra note 1, at 1340. As the Supreme Court
observed in Benson, software innovation saw “substantial and satisfactory growth in the absence of
patent protection.” Gottschalk v. Benson, 409 U. S. 63, 72 (1972) (quoting PRESIDENT’S COMMISSION
ON THE PATENT SYSTEM, TO PROMOTE THE PROGRESS OF USEFUL ARTS 13 (1966)).

140 Lemley, supra note 16, at 908 (“[T]he most important problem a product-making software
company faces today is not suits over claims with unclear boundaries but suits over claims that
purport to cover any possible way of achieving a goal.”); Cohen & Lemley, supra note 114, at 15 &
n.49.

