UIC John Marshall Journal of Information Technology & Privacy
Law

Volume 6 i
Issue 2 Computer/Law Journal - Fall 1985 Article 1

Fall 1985

Legal Protection for Microcode and Beyond: A Discussion of the
Applicability of the Semiconductor Chip Protection Act and the
Copyright Laws to Microcode, 6 Computer L.J. 187 (1985)

John R. Harris

Follow this and additional works at: https://repository.law.uic.edu/jitpl

b Part of the Computer Law Commons, Intellectual Property Law Commons, Internet Law Commons,

Privacy Law Commons, and the Science and Technology Law Commons

Recommended Citation
John R. Harris, Legal Protection for Microcode and Beyond: A Discussion of the Applicability of the
Semiconductor Chip Protection Act and the Copyright Laws to Microcode, 6 Computer L.J. 187 (1985)

https://repository.law.uic.edu/jitpl/vol6/iss2/1

This Article is brought to you for free and open access by UIC Law Open Access Repository. It has been accepted
for inclusion in UIC John Marshall Journal of Information Technology & Privacy Law by an authorized administrator
of UIC Law Open Access Repository. For more information, please contact repository@jmls.edu.

https://repository.law.uic.edu/jitpl
https://repository.law.uic.edu/jitpl
https://repository.law.uic.edu/jitpl/vol6
https://repository.law.uic.edu/jitpl/vol6/iss2
https://repository.law.uic.edu/jitpl/vol6/iss2/1
https://repository.law.uic.edu/jitpl?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol6%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol6%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol6%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/892?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol6%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1234?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol6%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/875?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol6%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@jmls.edu

LEGAL PROTECTION FOR MICROCODE
AND BEYOND: A DISCUSSION OF
THE APPLICABILITY OF THE
SEMICONDUCTOR CHIP
PROTECTION ACT AND THE
COPYRIGHT LAWS TO MICROCODE!

by JOHN R. HARRIS*

I. WHAT IS MICROCODE?civiiiiiiiiiiiiiaiieaiinanne. 189
II. AN EXEMPLARY MICROPROGRAMMED COMPUTER. 193
III. THE EFFECTS OF CHANGES TO A MICROPROGRAM . 198

IV. NANOPROGRAMMINGcciiiuiiiiiiiiineiaiiiinnnne. 199

V. BEYOND MICROCODE AND NANOCODE 200
VI. THE SCPA—DOES IT DO ANYTHING FOR

MICROCODEcoiiiiiniiiiiiiiniaeinraanreneanarnnne. 202

VII. COPYRIGHT PROTECTION AND MICROCODE 207

CONCLUSION—WHY NOT ANOTHER SUI GENERIS LAW? 211

The question of whether the present copyright laws! afford protec-
tion for microprogrammed circuits or “microcode,” especially after Ap-
ple Computer, Inc. v. Franklin Computer Corp.2 has already been
addressed.? With the passage of the Semiconductor Chip Protection Act

t © 1985 John R. Harris.

* John R. Harris specializes in electronics and computer-related intellectual prop-
erty law with the patent, trademark, and copyright law firm of Jones & Askew in At-
lanta, Georgia. After receiving a bachelor’s degree in electrical engineering with honors
from Georgia Institute of Technology in 1973, he worked as a special purpose computer
systems design engineer for several years. He received his J.D. and M.B.A. degrees from
Emory University in 1979. He has co-chaired the Southeastern Computer Law Institute,
held in Atlanta, for two years. This article was first presented at the Second Southeast-
ern Computer Law Institute in May 1985.

1. 17 US.C. §§ 101-118 (1982).

2. 714 F.2d 1240 (3d Cir. 1983).

3. See Harris, Apple Computer, Inc. v. Franklin Computer Corp.—Does a ROM a
Computer Program Make?, 24 JURIMETRICS J. 248 (1984).

187

188 COMPUTER/LAW JOURNAL [Vol. VI

of 1984 (SCPA),* a new intellectual property protection scheme is avail-
able for manufacturers of computer-related and other electronic equip-
ment providing more protection than the previous copyright and patent
laws. Even this new law, however, fails to provide adequate protection
for the microcode. This situation has recently been brought to the fore-
front of computer-related legal issues by NEC Corporation, with its ef-
fort to obtain a declaratory judgment that its new V20 series
microcomputer chips do not infringe any copyrights in Intel Corpora-
tion’s 8086/8088 microcomputers.®

This Article will examine several related questions. Is microcode,
or a microprogram, protected under any existing intellectual property
laws? Does the SCPA apply to microcode? If microcode is protected
under the copyright laws, how should the question of “substantial simi-
larity” be resolved in determining infringement?® Why do the patent
laws not protect microcode, given that the function of microcode is to
control the operation of a computer at the circuit level?

This Article presupposes a general familiarity with computers,
copyright law, and patent law, but not with microcode. To appreciate
the subleties regarding the protection of microcode, it is necessary to
have some understanding of what microcode is and why it is crucial to
the computer industry. Accordingly, this article will first address the
technical subject matter of ‘“microcode” and “microprogramming” for
intellectual property protection purposes, and will then examine the ap-
plicability of the patent laws, copyright laws, and the SCPA for protect-
ing microcode.

As will be shown, none of the existing intellectual property law
protection schemes are adequate to protect microcode, and one impor-
tant question is whether the instruction sets for computers should be af-
forded protection. One result of protecting computer instruction sets
would be to provide computer manufacturers with exclusivity in the
manufacture of computer hardware embodying the architectures they
have originated. Whether this is desirable from a policy standpoint is
beyond the scope of this Article, but is nonetheless an important
consideration.

4. Pub. L. No. 98-620, sec. 302, 1984 U.S. CopE CONG. & AD. NEws (98 Stat.) 3335,
3347 (codified at 17 U.S.C. §§ 901-914).

5. NEC Corporation and NEC Electronics, Inc. v. Intel Corp., No. C84-20799 WAI
(N.D. Cal. filed Feb. 14, 1985) [hereinafter cited as the NEC Complaint].

6. A basic element of copyright infringement is that there must be substantial simi-
larity between a plaintiff/copyright owner’s work and a defendant/alleged infringer’s
work. See M. NIMMER, NIMMER ON COPYRIGHT § 13.03 (1985).

1985] LEGAL PROTECTION OF MICROCODE 189

I. WHAT IS MICROCODE?

Many present day computers use microcode to coordinate the re-
sources of the central processing unit (CPU) of a computer system.” A
set of controlling “microinstructions” comprise a “microprogram,” con-
trolling the sequencing of the various CPU resources. Typically, each
microinstruction supplies a parallel combination of 1’s and 0’s to control
these resources and operates independently of the data flow of the
CPU. Because terminology may be crucial in determining whether and
how protection may be obtained, it is necessary to provide some defini-
tions of computer terms and some background in computer
architecture.

In this Article, the terms “microcomputer” and “microprocessor”
will be used interchangeably; however, there are some who maintain
that a microprocessor is a CPU on a single integrated circuit chip, while
a microcomputer is any computer system which includes a microproces-
sor.® It is extremely important to understand that a microcomputer or
a microprocessor does not necessarily contain any microcode or
microprogramming. The presence of microprogramming is strictly a
function of architecture (i.e., the design of the physical structure of the
computer), and not of nomenclature or labels.

In contrast, minicomputers are generally considered to be small
computer systems which have more processing power than a typical
microprocessor chip. Many of today’s minicomputers, however, employ
microprocessors as their main CPU, in addition to various supporting
peripheral circuitry, giving the system greater input/output power and
flexibility. In further contrast, a mainframe computer is large and has
few “mini-” or “micro-" aspects.

Confusion in the use of these and other computer terms is inevita-
ble, since the terminology is continually evolving and is being created
by the people who are creating the technology and not by grammati-
cally-oriented linguists.? Definitions in any rapidly evolving subject

7. “Resources” are computer circuits that function separately in carrying out the
functions of the CPU. The function of the CPU in most von Neumann-type computer sys-
tems is to execute programs stored in the main memory by fetching the instructions, ex-
amining or “decoding” the instructions to ascertain what to do, and then executing the
instruction. Typically, the CPU comprises circuitry for performing a memory access or
“fetch”; an instruction decoder; several small, local one-byte or one-word memories (“reg-
isters”) for holding the temporary results of calculations and addresses in the main mem-
ory of the next instruction and the data to be operated on; and arithmetic logic units
(ALUs) for performing mathematical operations on the data. These various components
in the CPU are typically known as resources.

8. See A. TANENBAUM, STRUCTURED COMPUTER ORGANIZATION 25-26 (1984).

9. “If you ask n different computer scientists to define ‘microprocessor’ or
‘microcomputer’ you are likely to get n different answers.” Id. at 25.

190 COMPUTER/LAW JOURNAL [Vol. VI

matter, such as computer technology, may change or become obsolete
within a short period of time. Thus, it is not possible (or desirable) to
place hard and fast definitions on “microcomputer,” “microprocessor,”
“minicomputer,” or “mainframe”; technical experts recognize the dan-
gers of this and caution against it.10

When different computing entities first appeared, there were defi-
nite technical differences between them, facilitating the assignment of
names and definitions. For example, early mainframes invariably had
word lengths of thirty-two bits or more; when microcomputers first ap-
peared, they usually had four bits. Mainframes could access extremely
large memories (in the million-word or “megaword” range), while
micro’s could only access relatively small memories, usually less than a
million bytes!! or “megabytes.” Today, microcomputers are employed
in constructing minicomputers. Microcomputers can control vast
amounts of memory and can execute the instruction sets of some main-
frame computers. The IBM Personal Computer XT/370, for example,
supposedly can execute the IBM System 370 mainframe’s instruction
set, therefore running what was once considered “mainframe only”
programs.

A detailed explanation as to what is meant by ‘“microcode” and
“microprogramming” is necessary. To explain these concepts ade-
quately, it must be noted that most modern computers are multi-level
in structure, as illustrated in Fig. 1. In this illustration, Level 1 is the
boundary between the digital logic level—the domain of the electronic
circuitry of the computer—and Level 2, the ‘“conventional machine
level”—the beginnings of computer programs as most commonly under-
stood. The levels above Level 2 are probably “computer programs” for
purposes of section 101 of the Copyright Act.!2 Also, Level 0 is probably
only entitled to patent protection, since only patent and not copyright
laws protect physical functioning structures.!3 As is often the case
when applying the law to a set of facts for the first time (or to facts

10. “[N]o conceptual difference exists between mainframes, minicomputers, and
microcomputers. They are simply rough names for various overlapping parts of a continu-
ous spectrum of processor power. Furthermore, future developments in technology are
likely to make these names even less meaningful than they are already.” Id. at 26.

11. The terms “word” and “byte” are also somewhat arbitrary. A “word” can be any
number of bits, depending on what the manufacturer wants to call the basic number of
bits which can be operated on with a single instruction. A word today typically means
sixteen bits; a long word may be thirty-two bits. A “byte,” on the other hand, is just what
it sounds like: take a “bite” of a longer word such as sixteen bits and you get an eight-bit
“byte.”

12. A “computer program” is a set of statements or instructions to be used directly or
indirectly in a computer in order to bring about a certain result. 17 U.S.C. § 101 (1982).

13. See Brown Instrument Co. v. Warner, 161 F.2d 910 (D.C. Cir.), cert. denied, 332
U.S. 801 (1947). In that case, the Court said:

1985] LEGAL PROTECTION OF MICROCODE 191

which the drafters of the law did not consider at the time), it is difficult
to draw a precise line at the microprogramming level and state une-
quivocably when a particular set of laws should apply instead of
another.

The boundary between hardware and software is not well defined,
nor can it be, so artificial legal distinctions which rigidly state that
“hardware is patentable only” or “software is copyrightable only” are
doomed to failure. As the levels of computer hierarchy in Fig. 1 illus-
trate, there must be a bottom level which consists of a machine with cir-
cuits, power supplies, disk drives, and other “hard” objects.

Levels higher than the pure hardware level can be, but not neces-
sarily are, “software.” It is theoretically possible to build a computer
which directly interprets higher level programming languages such as
FORTRAN by designing the circuitry to interpret the statements of this
language and execute them directly in hardware, without using a com-
piler such as at Level 5 in Fig. 1. Hardware and software are logically
equivalent;'4 any operation which can be done in software can be done
in hardware, and any operation which can be done in hardware can also
be done in software. There are, however, certain tradeoffs such as
speed, expense, reliability, and ease of modification.

Another important microprogramming concept to be explained is
that of a computer’s “instruction set.” This is the set of all computer
instructions available to a programmer at a particular level (of Fig. 1).
This means that there will be different instruction sets for the applica-
tion language level and for the machine language level. The machine
language level is the lowest level at which a program can be entered
into a computer from outside the computer. The documentation which
accompanies a computer system will detail the machine language of the
computer. This means that this is the ultimate form that a program of
instructions to the computer takes to enable the computer to function.
Thus, a computer’s “instruction set” may be defined as a predetermined
group of externally-originating commands, each having a predetermined
format, which cause a known result. Any commands taking a form dif-
ferent from those in the instruction set will not have any effect on the
computer, though wrong instructions have been known to produce dis-
astrous effects.

Articles intended for practical use in cooperation with a machine are not
copyrightable [citation omitted]. Both law and policy forbid monopolizing a
machine except within the comparatively narrow limits of the patent sys-
tem. . . . Since the machines which cooperate with the charts in suit are useless
without them, to copyright the charts would in effect continue appellant’s mo-
nopoly of its machines beyond the time authorized by the patent law.

Id. at 911.
14. A. TANENBAUM, supra note 8, at 11.

192 COMPUTER/LAW JOURNAL [Vol. VI

The number of instructions in an instruction set varies from level
to level and from machine to machine. Typically, instruction sets range
from about twenty to about 300 instructions. The instruction set and
the microprogramming level are closely related. The microprogram in
fact determines the instruction set and can only operate with a given set
of CPU resources, since the only purpose of a microprogram is to con-
trol a particular CPU’s resources in sequences necessary to carry out
the instructions in the instruction set. The instruction set, therefore, is
determined by the microprogram and not by what particular resources
may be present.

A microprogram, consisting of subinstructions or microinstructions,
causes the interpretation and effectuation of instructions in the instruc-
tion set. The microprogram is usually invisible to a programmer inter-
ested only in the outwardly-appearing functions of the machine. Most
programmers do not care what occurs within the machine; they simply
want their programs to be carried out in the manner they intended.
This is not to say, however, that programmers are not concerned with
“fine tuning” the operation of a computer; indeed, many programmers
are keenly interested in the internal handling of each instruction and
attempt to optimize execution speed or storage space of a program.
Rather, the key point is that most programmers write programs in a
language level above and including Level 2, since it is extremely tedious
and time consuming to do otherwise.

Microprogramming is a technique used by hardware designers to
implement the control functions of a computer.l’> As originally con-
ceived, microprogramming was meant to be a specific technique “to pro-
vide a systematic approach and an orderly approach to designing the
control section of any computing system.”1¢ Control in a computer re-
fers to control of the available resources.

It should also be noted that some computers, especially older ones,
do not have a microprogramming level. In these machines, instructions
are interpreted with sequential, hard-wired logic circuitry without any-
thing which could reasonably be called a set of subinstructions to con-
trol the actual timing and use of the computer resources. The choice
between direct interpretation by circuitry and indirect interpretation by
microprogramming is determined by many considerations. For in-
stance, with regard to speed of execution, direct circuitry is faster than
microprogramming. With regard to economics, direct circuitry is more
expensive than microprogramming. Finally, with regard to flexibility,
microprogramming can be changed more easily.

15. Flynn, Microprogramming Concepts, reprinted in P. FREEMAN, SOFTWARE SYs-
TEMS PRINCIPLES—A SURVEY 70 (1975).
16. M. Wilkes, The Best Way to Design an Automatic Calculation Machine 16 (1951).

1985] LEGAL PROTECTION OF MICROCODE 193

II. AN EXEMPLARY MICROPROGRAMMED COMPUTER

The next step in examining microcode is to discuss an exemplary,
but hypothetical, microprogrammed computer architecture. For the
sake of simplicity, assume that our hypothetical computer has only two
instructions in its instruction set: ADD X, Y and MOV ACC, Z. The
ADD instruction causes the computer to add two numbers—X and Y.
The number X is contained in a memory address following the instruc-
tion, while the number Y is contained in a memory address following
the number X (i.e., the two numbers to be added are embedded in the
program at the two consecutive addresses following the instruction).
The ADD X, Y instruction leaves the result of the addition in the accu-
mulator (ACC), a temporary data storage register resource. The MOV
instruction “moves” data from the accumulator to the address Z in the
memory address immediately following the instruction.

A few preliminary terms must be defined before the exemplary
CPU can be described. As shown above, computers include a number of
resources that allow data to be fetched, manipulated, and so forth.
These resources must be coordinated in order to execute the computer’s
instructions. Events such as fetching or adding data must occur in a
proper sequence of steps, as illustrated in Fig. 3.

The resources of a computer CPU are connected by a group of par-
allel wires known as a “bus.” Typically, there is an “address bus” (for
carrying the main memory address information), a “data bus” (for car-
rying the data to be operated on), and a “control bus” (for carrying the
signals which control the various resources). Examples of control lines
include signals to READ and WRITE the main memory, that is, signals
to fetch data from or store data in the memory at an address specified
on the address bus.

Other resources found in this exemplary computer include combi-
national circuits known as “multiplexers” (also known as “data selec-
tors”’) and “decoders.” A combinational circuit has one or more inputs
and provides outputs as a predetermined combination of the inputs on a
nontemporal basis. A multiplexer, illustrated in Fig. 4, has inputs A
and B (which can be multiple lines of a bus), a data output O the same
width as the inputs, and a control line which selects either A or B to
appear on the output. A decoder, illustrated in Fig. 5, on the other
hand, has n input lines, and 2™ outputs. If the input is viewed as a bi-
nary number, the decoder circuit provides an output only on the one
line which corresponds to the binary number input. As shown in Fig. 5,
there are four input lines, and 2% equals sixteen, so each of the sixteen
possible combinations of 1’s and 0’s in a four-bit binary number will
cause only one of the outputs to be active. Decoders are especially im-
portant in microprogramming, because they allow the “packing” and

194 COMPUTER/LAW JOURNAL [Vol. VI

“unpacking” of data. These functions allow a microprogram to become
more “vertical,” and thus more “computer program-like,” as opposed to
“horizontal,” which is more hardware-like. These concepts will be ex-
plained further as the exemplary architecture is examined.

The two additional resources that need to be introduced are the
“memory address register” (MAR) and the “memory buffer register”
(MBR). The MAR holds an address in main memory for the CPU to
access. The MBR receives the data from the main memory and sends it
to the CPU. The MBR also holds data from the CPU when data is to be
transferred out to the main memory. Both the MAR and the MBR pro-
vide an external interface between the CPU and the outside world, par-
ticularly the outside world of the main data memory.

The CPU fetches data (or the next instruction) from memory by
placing an address in the MAR and asserting the READ control signal.
The memory responds by retrieving the data (or instruction) from the
location specified by the address and sends it over the data bus where it
is loaded into the MBR. Likewise, when the CPU must store data in
memory, it places an address in the MAR, places the data in the MBR,
and asserts the WRITE control signal. The memory responds by taking
the data from the MBR and storing it at the specified address, which it
obtains over the address bus from the MAR.

There is an implicit assumption that the CPU does not know the
difference between data upon which it is to operate and instructions
which it is to execute. Most computer architectures today are referred
to as von Neumann-stored program architectures,!” which means that
both the programs to be executed and the data upon which the pro-
grams operate are stored in main memory (or provided from a source
external to the CPU such as a keyboard or other input/output device).
The CPU is able to distinguish between programs and data by being
given an address in the main memory where the program starts. The
CPU then begins to perform the operations of the program by fetching
the data stored at this starting address as its first instruction. The ad-
dress of the instruction to be executed is usually stored in a program
counter (PC), which automatically increases the address by 1 at the con-
clusion of each instruction. In the exemplary CPU, the PC provides the
address of the program to be executed to memory through the MAR.

In order to carry out the instructions in the instruction set, the
CPU determines what the instruction is through “instruction decoding,”
and then coordinates the resources in a sequence to carry out the in-
struction. After an instruction in a program (fetched from the address
stored in the PC) has been fetched, the instruction’s type is determined
by an instruction register, also known as an instruction decoder.

17. See H. GOLDSTINE, THE COMPUTER FROM PASCAL TO VON NEUMANN (1972).

1985] LEGAL PROTECTION OF MICROCODE 195

The fact that some programs of the CPU are external may be help-
ful in drawing the line between copyrightable programs and
noncopyrightable hardware. As described in more detail below, how-
ever, even a microprogram can originate outside of the CPU, making it
unwise to assign undue weight to the term “external.” Any distinctions
premised strictly on externality would probably fail.

The exemplary microprogrammed CPU illustrated in Fig. 6 shows
that the CPU includes two registers as resources, REGISTER A and
REGISTER B; an arithmetic logic unit (ALU), for performing
mathmatical manipulations; an accumulator (ACC), for receiving the
results of a manipulation performed by the ALU; an MAR; and an
MBR. There is also an instruction register which receives data purport-
ing to be an instruction and decodes such data by determining which of
the two possible instructions has been provided in a program. An inter-
nal data bus routes data between the various resources. The internal
data bus is “bidirectional,” meaning that data can move in two direc-
tions along the bus (e.g., from the MBR to the ACC, or from the ACC
to the MBR). The block labelled “control store” contains the
microprogram.

In order for the CPU to execute the instructions ADD X, Y and
MOV ACC, Z, the CPU must first fetch the instructions. It will be as-
sumed that the address of the first instruction—ADD X, Y—is placed in
the MAR by another mechanism.'8 Given our instruction set of two in-
structions, and given the list of resources at the disposal of the CPU, a
sequence of operations can be constructed that must be carried out by
the resources to execute the instructions. These two sequences are il-
lustrated in Fig. 3.

A list of the possible commands to the available resources to be car-
ried out by the microprogram can also be made, as shown in Fig. 7.
Each of the possible resource commands has been assigned a separate
number, so that the exemplary CPU has nine possible resource com-
mands (which shall be called “microcommands’”). This list is converted
into a microinstruction in Fig. 8. In Fig. 8, a “0” means that the control
indicated is not provided to the resource, while a “1” means that the
control is to be provided.

Note that the microinstruction in Fig. 8 is labelled “Type A”; in Fig.
12, a different type of microinstruction will be introduced to illustrate
how to make the microinstruction more vertical. What is being illus-

18. Most computers have a hard-wired, start-up address which is automatically placed
in the MAR or its equivalent when the computer is turned on, reset, or otherwise initial-
ized. It will be assumed that such a feature is present in the exemplary architecture. It
will not, however, be described in detail, because it would divert discussion from the pri-
mary issues.

196 COMPUTER/LAW JOURNAL [Vol. VI

trated in Fig. 8 is that different microprograms, with different se-
quences of the same microinstructions, can execute different machine
language instructions, thereby altering the instruction set. Likewise, a
different sequence of different microinstructions can execute the same
machine language instructions, giving the outward appearance to a
higher level programmer that differently microprogrammed computers
are functionally the same.

A set or series of microinstructions forms a “microprogram.” It
should be remembered that the execution of two machine level lan-
guage instructions, ADD and MOV, are being examined. This execution
occurs below the visible level of the programmer who writes a program
in machine language, or who writes at a higher level and has the level
of the program compiled or assembled downward to the machine lan-
guage level. The distinction between a program and a microprogram, as
have been defined here, must be borne in mind to avoid confusion. The
program is provided to the CPU from the outside, while the
microprogram is associated with the CPU resources, interprets the in-
structions, and coordinates selected CPU resources to carry out the
instructions.

An issue that still needs to be discussed is timing. A clock is pro-
vided to allow computer designers to achieve their desired sequences or
timing relations. A clock provides precisely timed electrical pulses
which can be used to trigger events in the CPU sequentially, as illus-
trated in Fig. 2. Three other concepts that need to be introduced are
machine cycles, clock cycles, and memory cycles. A machine cycle is
the time it takes the CPU to execute one instruction. A clock cycle, on
the other hand, is merely one complete pulse from the clock. A mem-
ory cycle is the time it takes for the memory to respond to a READ or
WRITE command from the CPU. The machine cycle and memory cycle
can be thought of as taking a particular number of clock cycles to com-
plete. These relationships are illustrated in Fig. 2. The ADD instruc-
tion requires three memory cycles: one to fetch the instruction, one to
fetch X, and one to fetch Y. The MOV instruction requires only two
memory cycles: one to fetch the instruction and one to store Z in the
memory.

A set of microinstructions (a microprogram) for fetching, interpret-
ing, and carrying out the ADD instruction is shown in Fig. 9. The se-
quence in which the microinstructions are carried out is from the top on
down, so that the first set of commands for the resources is at the top,
the next one below it, and so on. Each microinstruction takes one clock
cycle to complete, assuming that one clock cycle is a sufficient amount
of time for the main memory to respond to an address from the MAR
and place the requested data on the data bus to be loaded into the MBR.

1985] LEGAL PROTECTION OF MICROCODE 197

Thus, the ADD X, Y instruction takes a total of eleven clock cycles to
perform the machine cycle.

As can be seen in Fig. 9, the sequence of operations enables the var-
ious resources in turn to perform their basic tasks. For example, the
first task is to load the MAR with the address of the first instruction
and to assert the READ signal. On the next clock cycle, it is assumed
that the memory has responded by placing the requested data on the
data bus, so that the MBR can be commanded to load the data from the
data bus. Once the data is in the MBR, it must be routed to the instruc-
tion register at Step 3. The instruction must be decoded, since at this
point the CPU does not know which of the two possible instructions,
ADD or MOV, it will encounter first. No resources are enabled, since it
takes a finite amount of time to decode the instruction. After the de-
coding of the instruction, the CPU “knows” that an ADD instruction
has been received; accordingly, the CPU instruction decoding circuitry
causes the execution of the remaining eight steps of an ADD
instruction.

If the instruction decoding circuit had found that another type of
instruction was to be executed, a different set of microinstructions
would be executed. In the exemplary CPU, the only other instruction
possible is MOV ACC, Z. Accordingly, if the instruction decoding cir-
cuitry detected that the MOV instruction was to be executed, the
microprogram that is illustrated in Fig. 9 would “jump” down to Step
16, which are the resource commands for the MOV instruction (note
that Steps 12 through 15 are the same as Steps 1 through 4 and need not
be repeated).

The portion of the exemplary CPU which contains the
microprogram has various names, the principal one being “control
store.” The control store can take the form of a read-only memory
(ROM) or of a read/write memory. The form of a control store is not
important, except to illustrate that if a read/write memory is employed,
the microprogram is relatively easy to change. By changing the
microprogram, the functioning of the CPU will change by changing the
response of the CPU to the machine language instructions of a higher
level program. The control store of Fig. 9 takes a memory size of ten
bits per word by seventeen words, for a total storage of 170 bits.

In order to use the individual words in the control store and to exe-
cute jumps between microinstructions as mentioned above, the concept
of the “microinstruction register” (MIR) needs to be introduced. The
MIR holds the next microinstruction to be executed. The MIR, how-
ever, may be considered as a sort of microresource. It needs its own
controlling component to retrieve a microinstruction from the control
store and to load the microinstruction into the MIR. A microprogram
counter (MPC) is then used to point to the next microinstruction to be

198 COMPUTER/LAW JOURNAL [Vol. VI

executed in the control store, as illustrated in Fig. 10. Instruction de-
coding causes the MPC to jump to the appropriate address in the con-
trol store which was called for by the particular instruction decoded by
the instruction register.

III. THE EFFECTS OF CHANGES TO A MICROPROGRAM

Any change to the microprogram of any computer alters the coordi-
nation of the various resources. Thus, the CPU may be microprogram-
med to execute different machine level instructions or to execute the
same instructions differently. In addition, the structure of the
microprogram can be altered to accomplish different objectives. While
the physical resource architecture may not change, a microprogrammed
CPU can be made to appear completely different, with a different in-
struction set, merely with minor changes to the microcode. This should
help illuminate the discussion of whether section 102(b) of the Copy-
right Act excludes microcode from copyright protection.1?

Assume that the instruction ADD X, Y, instead of adding the num-
bers contained in the two addresses immediately following the instruc-
tion, adds the numbers contained in the addresses stored in the two
addresses immediately following the instruction. In other words, the
data which is added does not follow the instruction. Rather, the two ad-
dresses following the instruction contain the addresses of the data to be
added. This means that in the exemplary microprogram, in order to ex-
ecute such an instruction, the data following the instruction in memory
should be loaded into the MAR as addresses for fetch operations.

A microprogram to accomplish this different type of ADD instruc-
tion is shown in Fig. 11. This type of ADD instruction may be referred
to as an indirect instruction, because the instruction does not directly
add the data immediately following the instruction in memory. Rather,
the instruction causes the immediately following data to be used as ad-
dresses. The microprogram that accomplishes this type of “add” takes
nineteen clock cycles, thus taking longer to execute. The bidirectional
internal data bus allows the contents of the MAR to be temporarily
stored in the accumulator so that the external program can continue ex-
ecuting in its program sequence. Thus, the data fetched at Step 5 even-
tually gets loaded into the MAR (at Step 8) to become the address for
fetching X. Similarly, the data fetched at Step 12 gets loaded into the
MAR (at Step 15) to become the address for fetching Y. Steps 7 and 14
include the process of enabling the contents of the MAR to appear on

19. In no case does copyright protection for an original work of authorship extend to
any idea, procedure, process, system, method of operation, concept, principle, or discovery,
regardless of the form in which it is described, explained, illustrated, or embodied in such
work. 17 U.S.C. § 102(b) (1982).

1985] LEGAL PROTECTION OF MICROCODE 199

the internal data bus so that it can be temporarily saved in the
accumulator.

The key point is that the physical resources of the CPU do not
change; only the microprogram changes. The instruction ADD X, Y in
Fig. 11 is a different instruction from that in Fig. 9. It should be under-
stood, then, that a different microprogram can make a different com-
puter, even though the hardware itself has not changed.

The structure of a microprogram can sometimes be altered to make
it more vertical. A microinstruction having one control function per bit,
such as “load the MAR,” is considered to be horizontal. If the encoding
of control bits is employed, the microprogram is said to have some verti-
cal aspects. For example, note that in the Type A microinstruction of
Fig. 8, there are seven resource registers which may be loaded with
data. If each of these registers are assigned a number from 1 to 7, three
bits can be used to select these registers, since 23 = 8 (leaving an extra
bit). Thus, one can eliminate a separate control line for each of the reg-
isters emanating directly from the control store, insert a three-bit de-
coder (such as in Fig. 5) to select a register, and thereby make the
microinstruction narrower (six instead of ten bits). An illustration of
this narrower, Type B microinstruction, with coded register select bits
A, B, and C can be found in Fig. 12. A control circuit for this type of
microinstruction is illustrated in Fig. 13.

Horizontal CPU designs usually have a relatively small number of
wide microinstructions. Vertical designs, however, will usually have
relatively many narrow microinstructions. In the exemplary CPU, the
only real difference between the control circuit for Type A microin-
structions and Type B microinstructions is that a slightly longer clock
cycle may be required to allow sufficient time for the register select sig-
nals A, B, and C to pass through the decoder.

IV. NANOPROGRAMMING

A notion closely allied with that of microprogramming is “na-
noprogramming,” the generation of nanocode or nanoinstructions. The
tendency towards miniaturization in electronics has fostered the need
for labels to differentiate between levels of systems, which are arguably
smaller than the preceding levels in some fashion, thus creating the
need to introduce even more jargon.

Nanoprogramming is an extension of verticality in a microprogram.
When certain microinstructions occur several times, it may be desirable,
from a cost savings standpoint, to store the frequently occurring
microinstruction in a control store only once, so as to enable it to be
called forth when needed.

A close examination of the microprogram for ADD X, Y in Fig. 11

200 COMPUTER/LAW JOURNAL [Vol. VI

reveals that while there are nineteen different steps, there are only
eight different microinstructions (actually, there are nine, but Step 4
will be dealt with separately). These eight different microinstructions
can be placed in a nanostore (Fig. 14) to be accessed with a three-bit
code. The microprogram would then consist of nineteen three-bit items
for selecting the microinstructions in the nanostore, as illustrated in
Fig. 15. The nanocoded microprogram of Fig. 15 corresponds to and im-
plements the same instructions as the microprogram of Fig. 11.

The microprogram of Fig. 15 is executed, first, by fetching a three-
bit code from the control store. The three-bit code is then used to select
a nanostore word from Fig. 14, which is fetched and placed in the
microinstruction register (MIR). The MIR is then used to control the
various CPU resources as in the earlier examples. At the end of this
step, the next three-bit code is fetched from the control store, and the
process is repeated.

The microprogram of Fig. 11 requires a total storage of nineteen
steps times ten bits per microinstruction, for a total control store of 190
bits. The required storage for the nanoprogrammed version of Figs. 14
and 15, however, is eight microinstructions times ten bits per microin-
struction (eighty bits), plus nineteen steps times three bits select code
per step (fifty-seven bits), for a total of 137 bits. Thus, fifty-three bits
(190 - 137) of control storage have been saved. While these savings may
not seem significant, it must be remembered that the exemplary CPU is
extremely basic and simple. In addition, real world microprogrammed
computers in use today have instruction sets running in the hundreds of
instructions, so the savings can be extremely significant. The trade-off
is that overall CPU operation will be slower, since time must be allotted
for fetching data from the control store as well as from the nanostore.

V. BEYOND MICROCODE AND NANOCODE

There are two purposes for the foregoing exercise. One is to illus-
trate some concepts in computer science which have raised intellectual
property issues, since there is a need and a desire for protection of the
fruits of intellectual labor. The other purpose is to illustrate the diffi-
culties encountered in applying intellectual property laws to rapidly
changing technology. Technological progress does not appear to be
slowing down. Computer science is not a stagnant field, and there are
probably other concepts in computer architecture which are beginning
to raise legal issues. If one is interested in other aspects of computer
science, such as pipelining, array processing, bit-slice structuring of re-
sources, and parallel processing, a number of excellent texts are

1985] LEGAL PROTECTION OF MICROCODE 201

available.20

One important historical aspect of microprogramming is that it al-
lowed the advent of emulation. Emulation is a method whereby the in-
struction sets of computers, other than a given one, are implemented
with the resources of the given computer.?! Emulation is an issue
which has previously arisen in computer-related litigation22 and contin-
ues to arise, such as in the NEC/Intel case.

Another issue is that the increasing availability of relatively inex-
pensive and fast read/write memories makes dynamic microprogram-
ming attractive. Dynamic microprogramming is the use of fast read/
write memories, rather than hardwired programmed logic arrays
(PLAs) or read-only memories (ROM), for the storage of micro-
programs.2® Having a separate read/write memory for a microprogram
facilitates changes to the microprogram and gives the appearance of ex-
ternality to the microprogram, as read/write memory makes the
microprogram conveniently accessible to a programmer who wishes to
program for the optimization of CPU resources. For this reason, it may
be unwise to premise legal protection for programs strictly on the basis
of the program being external to the computer.

In concluding the discussion on microcode and microprogramming,
it has been observed that the term “microprogramming” is an inade-
quate description of the technique, and that what is actually occurring is
“interpretive” programming.2¢ Microinstructions might be viewed as a
part of a computer programming language called a “directly executable
language”,25 which merely serves to bring the programmer closer to the
machine itself when writing a program. Accordingly, the question as to
how close to the hardware can copyright protection for programs ex-
tend may depend on how strictly a court interprets the language of sec-
tion 102(b).

The problem of differentiating hardware from software will not get
any easier. The problem may be compounded by the increased usage of
hardware description languages (HDLs)—computer program-like lan-

20. See, e.g., A. TANENBAUM, supra note 8; P. FREEMAN, supra note 15.

21. See Flynn, supra note 15, at 79.

22. The case, Data General Corp. v. Digital Computer Controls, Inc., 357 A.2d 105,
(Del. Ch. 1975), was the first of a series of trade secret cases brought against manufactur-
ers of Data General’s Nova 1200 minicomputer emulators. The cases ultimately backfired
and resulted in massive antitrust litigation. See, e.g., Digidyne Corp. v. Data General
Corp., 734 F.2d 1336 (9th Cir. 1984); In re Data General Corp. Antitrust Litig., 529 F. Supp.
801 (N.D. Cal. 1981); In re Data General Corp. Antitrust Litig., 490 F. Supp. 1089 (N.D.
Cal. 1980).

23. See Cook & Flynn, System Design of a Microprocessor, reprinted in P. FREEMAN,
supra note 15, at 85.

24. See Flynn, supra note 15, at 84.

25. Id.

202 COMPUTER/LAW JOURNAL [Vol. VI

guages for designing computer systems through the use of language-like
techniques rather than through symbolic or diagrammatic techniques.26
These HDLs allow computer hardware to be described in a language,
which can then be converted by an existing computer into schematic di-
agrams, timing diagrams for studying resource timing relationships, and
microprogram code for a proposed computer architecture. In the fu-
ture, therefore, it may become virtually impossible to differentiate be-
tween a “computer program” for which one form of legal protection
may be available, and an “electronic computer” for which another form
of legal protection (such as the SCPA or patent laws) may be available.

VI. THE SCPA—DOES IT DO ANYTHING FOR MICROCODE?

The Semiconductor Chip Protection Act of 1984 (SCPA) creates a
new form of intellectual property and constitutes a departure from
prior U.S. law. Congress has previously sought to extend intellectual
property protection to new technologies through the expansion of ex-
isting laws, for example, when it passed the 1980 amendments to the
Copyright Act.2? The SCPA is neither a patent law nor a copyright law.
Though the SCPA contains aspects of both patent and copyright law, it
more closely resembles copyright law.

The SCPA, being sui generis, attempts for the first time to meet
the legal needs of new technology by creating a new, hybrid form of
protection, rather than by attempting to adapt existing laws that were
designed to protect the creations of inventors and authors. While credit
could be given to the Founding Fathers for being farsighted enough to
have contemplated that the Constitution should allow for such depar-
tures,?® it is conceivable that a constitutional challenge might someday
be made to the SCPA on the ground that a chip designer is neither an
author nor an inventor. It is hoped that such an attack will not be seri-
ously considered, since circuit designers must often possess skills of
both authors and inventors to create new and useful semiconductor
products.

The initial attempts in passing legislation for the protection of
semiconductor products were not successful. This was due primarily to
a split in the semiconductor industry over the goals of such legislation.2?
In 1983, the Senate version of the SCPA (also called the ‘“chip bill”)

26. See COMPUTER, Feb. 1985 (entire issue).

21. See 17 U.S.C. § 117 (1982).

28. U.S. CONST. art. I, § 8 states: “The Congress shall have Power . . . [t]lo promote
the Progress of Science and useful Arts, by securing for limited Times to Authors and In-
ventors the exclusive Right to their respective Writings and Discoveries (emphasis
added).”

29. See Hearings on H.R. 1007 Before the Subcomm. on Courts, Civil Liberties and the
Administration of Justice of the House Judiciary Comm., 96th Cong., 1st Sess. (1979).

1985] LEGAL PROTECTION OF MICROCODE 203

provided copyright protection for mask works,3® but this provision was
not in the House version.3! The Senate was concerned that abandoning
the copyright approach might result in uncertainty in litigation until
the courts definitively interpreted the new legal concepts. Thus, the re-
sulting law generally favors the copyright approach, explaining why the
SCPA is administered by the Copyright Office in the Library of
Congress.32

The SCPA applies to “semiconductor chip products” and “mask
works.”33 A “semiconductor chip product” is a multi-layered product of
metallic, insulating, or semiconductor material created in accordance
with a predetermined pattern and intended to perform electronic cir-
cuitry functions. Although this definition probably was not meant to be
extended to products other than semiconductors, the definition appears
to be broad enough to cover products such as printed circuit boards and
other types of circuit layouts.3¢ A “mask work” is a series of related
images, however fixed or encoded, that represents the three-dimen-
sional pattern or topography of the chip’s surface. The mask work is
“fixed” in a chip when its embodiment is sufficiently permanent to en-
able it to be perceived or reproduced for more than a transitory period.
The provision, “however fixed or encoded,” appears to be sufficiently
flexible enough to include foreseeable advances in photolithography
and other chip manufacturing technologies, as well as the use of hard-
ware description languages which can be directly converted into chip
layouts. Although there are several different types of “works” which
could conceivably be protected by the SCPA,3> only the chip configura-
tion and layout were arguably intended to be the subjects of the
legislation.36

30. See S. 1201, 98th Cong., 1st Sess., 129 CONG. REC. S5992 (daily ed. May 4, 1983).

31. See H.R. 5525, 98th Cong., 1st Sess. (1983).

32. See 17 U.S.C. § 903(c)(1) (Supp. II 1985). This law, originally H.R. 6163, substan-
tially comports with H.R. 5525. See also 130 CONG. REC. S12,916 (daily ed. Oct. 3, 1984)
(explanatory memorandum—Mathias-Leahy Amendment to S. 1201).

33. See 17 U.S.C. § 902 (Supp. II 1985).

34. But see Boorstyn, The Doctrine of Fair Use, 1 COPYRIGHT L.J. 1 (1985), who states,
without citing any authority, that the definition does not include other products such as
magnetic films or printed circuit boards.

35. These may include (1) schematic diagrams, layouts and the like represented in
mylar, paper, photolithographic masks, and the like produced during the process of chip
design and manufacture, (2) computer programs fixed on chips such as ROM or PLAs,
(3) audiovisual works, program-related, generated or dependent, found “fixed” in chips
for copyright purposes as in Atari, Inc. v. North American Philips Consumer Electronics
Corp., 672 F.2d 607 (7th Cir. 1982), and (4) the configuration, topology, architecture, or
surface and subsurface appearance or pattern on the chips themselves. See Baumgarten &
Patry, Update on Software Publishers and Semiconductor Chip Legislation, COMPUTER
Law., Feb. 1984, at 12.

36. Id.

204 COMPUTER/LAW JOURNAL [Vol. VI

These definitional provisions and the applicable legislative history
are the only guidelines for determining what items are meant to be cov-
ered by the SCPA. There are, however, some provisions which exclude
coverage in certain circumstances. Mask works which are not original
are excluded from protection;3” however, the term “original” is not de-
fined. If traditional copyright concepts were to be used, then “original”
would mean works that are independently created and not copied from
another.38 Also excluded are mask works, which consist of designs that
are staple, commonplace, or familiar in the semiconductor industry, or
variations or combinations of such designs, that when considered as a
whole, are not original.3® The issue of originality may potentially be a
fertile ground for litigation, especially if an accused infringer is repro-
ducing products that have been on the market for some time or embody
only marginal differences over arguably familiar products. A defense of
invalidity based on “commonplace” or “staple” grounds is most likely to
be raised for gate arrays and memory devices (which generally have re-
petitive basic structures).

When litigating the issue of originality of designs, or of variations
or combinations thereof, expert testimony may be required. One com-
mentator has suggested that the determination of originality will de-
pend on whether a mask work is merely an insubstantial variation of
the prior art as it existed at the time of the registration of the mask
work, or whether the effort, expense, and original contributions re-
sulted in a new work when considered as a whole.#® Under this view, a
mask work must have resulted from substantial effort and investment,
and it must contain more than insubstantial variations on the prior
mask work.4! This leads to the next type of exclusion from coverage
under the SCPA, “reverse engineering.”

The copying of a mask work solely for the purpose of teaching, ana-
lyzing, or evaluating the concepts or techniques embodied in the mask
work, or the circuitry, logic flow, or organization of the components
used in it, does not constitute an infringement.42 It can be argued that
once the mask work has been lawfully copied solely for these legitimate
purposes, the reverse engineer may then incorporate the results of such
analysis in creating his own “original” work, which would then be enti-
tled to its own protection.43 The requirement that a second mask work
derived from the analysis of a protected mask work be created by re-

37. 17 U.S.C. § 902(b) (Supp. II 1985).

38. See M. NIMMER, supra note 6, at § 2.01[A] and cases cited.
39. 17 U.S.C. § 902(b) (Supp. II 1985).

40. See Boorstyn, supra note 34, at 2-3.

41, Id.

42, 17 U.S.C. § 906 (Supp. II 1985).

43. See Boorstyn, supra note 34, at 3-4.

1985] LEGAL PROTECTION OF MICROCODE 205

verse engineering seems to be stating that the second work is not, under
these circumstances, “copied” from the protected work. While this con-
cept was not present in any earlier versions of the House or Senate
bills, the version embodied in the SCPA seems to be a restatement of
the idea/expression dichotomy found in copyright law.# Under this ap-
proach, the creator of a second mask work is, arguably, free to copy and
use the ideas, concepts, or principles embodied in a lawfully-analyzed
protected work.

Distinguishing between the idea embodied in a mask work and the
form or manner of expression is not easy. Such differentiation, how-
ever, is necessary to determine whether or not works, as a whole, are
old and staple or have been created with effort and original contribu-
tion. While the hybrid SCPA does not set forth tests such as that of
“obviousness” found in the present patent laws,%® patent law cases
might help in making originality determinations. These cases, for ex-
ample, caution against the dissection of old elements which may form a
new combination because of the risk that the subject matter will not be
analyzed as a whole.46

In applying these concepts to microcode, it is expected that mask
work protection will be sought for microprogrammed microprocessors,
since the unlicensed second-sourcing and pirating of such products pro-
vided much of the original impetus for the legislation.4” The Intel/NEC
litigation has already demonstrated that determinations along the lines
of “reverse engineering” for microcode on the 8088/8086 microcom-
puters may be necessary; however, that litigation is premised on the
copyright laws and not the SCPA or patent laws. Yet, if the case goes
to trial, it may prove instructive in making these determinations.*®

44. See Baker v. Selden, 101 U.S. 99 (1879), where the Supreme Court first ruled that
copyright law did not provide protection against the appropriation of an idea or process
utilized in an author’s work, but rather protected only the particular “expression”
adopted by the author to convey his idea or process.

45. “A patent may not be obtained . . . if the differences between the subject matter
sought to be patented and the prior art are such that the subject matter as a whole would
have been obvious at the time the invention was made to a person having ordinary skill in
the art to which said subject matter pertains.” 35 U.S.C. § 103 (Supp. II 1985) (emphasis
added).

46. Many of these cases deal with situations wherein the Patent Office has rejected a
patent for a claimed invention by creating a hindsight reconstruction of the invention
through the combining of teachings from one or more prior art references. The courts are
quick to state that such hindsight reconstructions are tantamount to saying that the
claimed invention would have been ‘“obvious to try” by combining the prior art refer-
ences, which is impermissible in evaluating an invention “as a whole.” See, e.g.,, In re
Sernaker 702 F.2d 989 (F. Cir. 1983); In re Yates, 663 F.2d 1054 (C.C.P.A. 1981).

47. S. 1201, supra note 30, 129 CONG. REC. $5991-92 (introductory remarks of Sen.
Mathias).

48. As of the final submission of this article, cross-motions for summary judgment

206 COMPUTER/LAW JOURNAL [Vol. VI

NEC alleges that it obtains certain functional advantages in its V20
design by altering the resources. For example, the V20 employs a dual
internal data bus structure which allows two registers in the ALU to be
loaded simultaneously.?® The 8086/8088 microcomputers allegedly have
only one internal data bus,’® as does the exemplary CPU described
above. Moreover, the microinstructions in the V20 are wider, since they
must control more resources simultaneously®! (such as selecting which
one of the two internal data buses from which a selected register will
receive data). In addition, the generation of addresses in the V20 are al-
legedly performed by a dedicated address-generating resource not pres-
ent in the 8086/8088, thus enabling the V20 to generate memory
addresses in two clock cycles as opposed to five to twelve clock cycles in
the 8086 and 8088.52 Other differences include resources in the V20/V30
such as a shift and loop counter (for certain arithmetical operations)
and a prefetch pointer (for fetching the next instruction before comple-
tion of the present one to speed up branching operations).53

The presence of these additional resources—were the issue solely
one of the infringement of a protected mask work—should probably re-
quire a finding that substantial reverse engineering resulted in the crea-
tion of an original work entitled to its own protection. The use of
different, wider microinstructions arranged in different sequences to ob-
tain different performance characteristics would make a determination
of mask work infringement difficult.

Intel maintains, however, that the 8086/8088 microcode fixes cer-
tain starting addresses for microcode sequences at arbitrary locations.
In the NEC chip, 257 out of 302 of these arbitrary starting addresses are
the same as in the Intel chips.5* The duplication of these starting ad-
dresses might very well suffice to establish a pattern of sufficient speci-

were pending in the Intel case directed to the issue of whether the copyright laws afford
protection for microcode, and in particular, whether there were any material issues of fact
for trial. The motions and briefs were not available for review due to a protective order.
See Intel Asks Court Judgment on Microcode Copyright Protection . . . ELECTRONICS
WEEK, July 1, 1985, at 12.

49. NEC Complaint, supra note 5, at § 14.

50. Id.

51. Id. at 1 15 (the V20/V30 have twenty-nine-bit wide microinstructions, while the
8086/8088 have twenty-one-bit wide microinstructions).

52. Id. at f 14.

53. Id.

54. Duffy, Intel Court Bid to Bar NEC Chips Could Cost Users Strong Product, PC
WEEK, Mar. 5, 1985, at 8. In Fig. 9 of the exemplary CPU architecture described above,
the corresponding “arbitrary” starting microcode sequences are Step 1 for the ADD in-
struction and Step 12 for the MOV instruction. It would have been just as easy to switch
these two sequences of microinstructions in Fig. 9 so that the MOV microinstructions
would begin at Step 1 and extend through Step 6, and the ADD microinstructions would
begin at Step 7 and extend through Step 17.

1985] LEGAL PROTECTION OF MICROCODE 207

ficity to enable a court to hold that there is substantial similarity under
the copyright laws to establish infringement.53

The NEC/Intel case, however, is based on copyright and not mask
work infringement (the 8086 was commercially distributed more than
two years ago, thus not qualifying for mask work protection¢). In any
event, the SCPA should apply to proscribe the outright duplication of a
protected mask work, which also happens to be a microprogrammed
microcomputer. When the issue, however, is whether the SCPA can be
applied to protect the instruction set of such a microprogrammed com-
puter or to protect against modifying the microinstructions of a pro-
tected mask work to alter the performance characteristics of the chip,
the conclusion that the SCPA applies is not as clear. Judicial applica-
tion of the principles of originality, reverse engineering, and substantial
similarity to allegedly infringing works must be sought in an appropri-
ate case.

VII. COPYRIGHT PROTECTION AND MICROCODE

Although copyright issues have already been discussed with regard
to the SCPA, copyright issues raised in the NEC/Intel litigation must
now be examined. For example, does the existence of different types of
microinstructions, arranged in different sequences to accomplish certain
functions in a more efficient manner (as for increased speed and flexi-
bility) as well as to execute the same machine language instruction set,
require a finding of copyright infringement? That is, is Intel seeking to
protect the instruction set of the 8086/8088? This appears to be the basic
goal of Intel in the litigation, since there are clear economic advantages
in being the sole lawful manufacturer of a computer having a popular
and widely used instruction set. Protection of the instruction set for the
8088 (used in the IBM PC series of microcomputer systems) would al-
low Intel the enviable position of being the only manufacturer of
microprocessors that could be used in such computer systems while still
maintaining software compatibility. Any advantages obtained by one

55. In Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930), cert. denied,
282 U.S. 902 (1931), Judge Learned Hand stated his famous and oft-quoted “abstractions”
test for substantial similarity:

Upon any work . . . a great number of patterns of increasing generality will fit

equally well, as more and more of the incident is left out. The last may be no

more than the most general statement of what the play is about, and at times
consist of only its title; but there is a point in this series of abstractions where
they are no longer protected, since otherwise the playwright could prevent the

use of his ‘ideas,’ to which, apart from their expression, his property is never

extended.

It is perhaps worthwhile to ask, is the machine language instruction not at least one ab-
straction level removed from the microinstructions which implement the instruction?

56. 17 U.S.C. § 908 (Supp. II 1985).

208 COMPUTER/LAW JOURNAL [Vol. VI

who expanded on or improved the execution of the instruction set
would accrue to the originator of the instruction set. Products such as
the V20 and V30 (or other emulators) would be impossible to produce
legitimately without some form of license from the owner of the in-
struction set.57

The question can be posed in a slightly different manner. Is not the
instruction set for any given computer, if such computer is
microprogrammed, merely an expression of the microinstruction set,
thus being entitled to copyright protection? Microinstructions can be
viewed as a “set of statements or instructions . . . used directly or indi-
rectly in a computer in order to bring about a certain result,”5® namely,
the result of interpretation and execution of the machine language in-
structions. The instruction ADD X, Y of Fig. 11 is a different instruc-
tion from that of Fig. 9. It should therefore be apparent that a different
microprogram can make a different computer, even though the hard-
ware itself (that is, the available resources) is no different. Thus, the
question can be asked, is not a microprogram (with its microinstruc-
tions) a set of statements or instructions to be used directly or indirectly
in a computer in order to bring about a certain result?59

On the other hand, is not the microprogram also a “procedure, pro-
cess, system, [or] method of operation”® which is expressly denied
copyright protection? The close proximity of microcode to the control
of the physical resources can be expected to be problematic for the
courts, since there is arguably no purpose for microcode, whatsoever,
other than to control the processing of machine language instructions
within the computer or to implement the particular method of opera-

57. One possible result of a finding that protection is available for an instruction set is
the creation of legal relationships akin to “dominant/subservient” patents. See, e.g., N.J.
Zinc Co. v. Singmaster, 71 F.2d 277, 279 (2d Cir. 1934), where the court said “[t]here
should be no confusion between he right of the owner of a dominating patent to prevent
infringement thereof by improvement patents and the right of the improver to his im-
provements and his right to prevent infringement of the improvement patents by the
owner of the dominating patent.” The improvement or “subservient” patent owner can-
not legally sell his improvement because it is covered by the dominant patent, nor can the
dominant patent owner sell the improvement to his invention because it is covered by the
subservient patent; cross-licensing arrangements are sometimes employed to solve this di-
lemma.

A similar situation might occur if the instruction set is protected under the copyright
laws, but the improvement is protected by the SCPA. The owner of the copyrighted
microcode for a given instruction set could not legally produce the improved version of
the same computer protected as a mask work, nor could the owner of the mask work on
the improved computer sell the improved computer because of the copyrighted instruc-
tion set.

58. 17 U.S.C. § 101 (1982) (defining “computer program”).

59. Id.

60. Id. § 102(b).

1985] LEGAL PROTECTION OF MICROCODE 209

tion of the computer in response to a particular machine language in-
struction. Microcode is therefore very close to the boundary of what is
copyrightable.

One commentator has proposed that the critical question of
copyrightability for microcode is whether the computer is “authored” or
“built.” This question is posed by asking whether the microprogram-
mer is manipulating symbols or setting circuits on or off.61 Under this
approach, the issue is determined solely by looking not at the microcode
itself, but at how the microprogram is created. If it is done by setting
circuits, then the result is not copyrightable. But if it is done by manip-
ulations in accordance with a microprogramming “language,” then it is
copyrightable. Additionally, microprograms that use a previously-cre-
ated microinstruction set should be copyrightable.52 This appears to
recognize that once the resources for a particular computer architecture
have been selected (thereby determining what the microcode must
physically manipulate), an arrangement of these microinstructions to
carry out new instructions in the instruction set, if done symbolically,
constitutes a copyrightable work.

This approach has the appeal of simplicity and is relatively easy to
apply; all that needs to be done is to examine the work product of the
engineers and see if symbols were manipulated in a “language” or if
schematic drawings were scribbled upon. In other words, the issue of
copyrightability would be determined by examining how the work is
created—a method not unlike distinguishing between authorship and
invention. As with authorship and invention, however, there is some-
times overlap. For example, in the landmark computer patent case of
Diamond v. Diehr,%® the program at issue would no doubt have been
considered copyrightable under present copyright laws. This approach
does not provide an answer as to whether an instruction set, however
created, should be copyrightable. It seems unfair to offer copyright pro-
tection for any microcoded computer which is created by a person who
manipulates symbols, but to deny the same protection for a computer
which performs the same task in exactly the same manner created by
an individual who prefers working with an oscilloscope and wires to
“hacking code” (i.e., writing programs). Moreover, it is doubtful that
very much microcode is produced without some combination of both
symbol and circuit manipulation.

The mere examination of how a work is created should not be

61. Davidson, Protecting Computer Software: A Comprehensive Analysis, 23
JURIMETRICS J. 337, 390 (1983).

62. Id

63. 450 U.S. 175 (1981) (claim for a process for curing rubber held to be patentable
subject matter; a computer program controlled the process).

210 COMPUTER/LAW JOURNAL [Vol. VI

wholly determinative of the applicability of copyright protection (or any
other protection, for that matter). Merely looking at how a
microprogrammed computer was developed will penalize creative com-
puter scientists who prefer working mainly in the hardware domain as
opposed to the software domain, and may force companies who invest
significantly in computer system development to shift towards symbol
manipulation design techniques at the expense of more efficient
designs.64

In the event that a court decides that microcode in a microprogram-
med computer is copyrightable (as is possible in the Intel/NEC case),
the following corollary may also be argued: there should be protection
for the computer’s instruction set, since it will not be possible to pro-
duce a set of microcode which does not contain substantial similarities
and which still executes the same instruction set. But what if a given
computer architecture is not microprogrammed, or what if someone
constructs a nonmicroprogrammed version of a microprogrammed com-
puter? As described above, there is no absolute requirement that
microprogramming be employed to implement any particular computer
CPU instruction set. If protection for an instruction set can be obtained
by first creating the instruction set on a microprogrammed CPU, manu-
facturers would no doubt first implement new computers using symbol
manipulation microprogramming techniques and leave advanced devel-
opment for higher speed execution with discrete logic for later, after
protection for the instruction set had been firmly established.

With respect to nanoprogramming, if a manufacturer of a CPU hav-
ing Type A microinstructions claims copyright infringement against a
manufacturer of a CPU having Type B microinstructions (e.g., see Figs.
8 and 12), will a court find that there is substantial similarity between a
microprogram of Type A microinstructions and a microprogram of Type
B microinstructions? Unquestionably, the end results of both
microprograms would be the same, yet in this case, there is extra hard-
ware (the decoder to select a register) required to carry out the microin-
struction. This question may be faced by the court in the Intel/NEC
litigation, since it is alleged that the respective microinstructions of the
two computers at issue have different microinstruction widths.65

CONCLUSION—WHY NOT ANOTHER SUI GENERIS LAW?

It is possible that the question of protection for microcode may not

64. In this author’s opinion, the increased usage of hardware description languages
(HDLs) may not make this such an undesirable consequence, provided that the efficien-
cies of operation traditionally associated with nonmicroprogrammed architectures can be
preserved.

65. See supra note 54.

1985] LEGAL PROTECTION OF MICROCODE 211

be finally disposed of in the Intel/NEC litigation. Only copyright issues
have been raised (or could be raised), but copyright law seems to be ill-
equipped for determining whether instruction sets should be protected
because of the differences between the 8086/8088 and the V20/V30 re-
sources and microinstructions. Proposed approaches for adapting ex-
isting copyright law to microcode, such as examining how the microcode
was created, are not desirable. This is another example of straining the
existing law to cover something for which the law was not intended.
Technology continuously changes, yet there is still a propensity in try-
ing to apply old law to new problems. The inevitable result is that
there will be legal and economic uncertainty until there is a definitive
ruling or legislative enactment.56

What, then, can be concluded about copyrightability for microcode?
For that matter, can any conclusion be drawn that microcode is legally
protectable? As discussed, a finding of de jure copyrightability for
microcode, as in the Intel litigation, may result in the de facto protec-
tion for the instruction set, especially if one focuses on the substantial
similarities which necessarily result when one computer manufacturer
attempts to create an emulation or improved version of another manu-
facturer’s successful product. There is no question that a manufacturer
of a highly successful product such as the Intel 8086/8088 desires to
maintain this success. Maintaining such success, however, may result in
higher prices for consumers and slower technological progress, since
competition will be chilled.

The SCPA does not really resolve any of the problems, since differ-
ent resources and microinstructions in the emulator product strongly
suggest reverse engineering. The SCPA was not intended to address
any microcode related issues directly, although it has the effect of forc-
ing careful documentation by those who employ reverse engineering.

Although this Article does not discuss in detail the applicability of
the patent laws to microcode, the author, whose primary experience lies
in the applicability of the patent laws to electronics and computer-re-
lated technologies, believes that in the proper case, the patent laws will
cover microcoded computer architectures, but not instruction sets. This
conclusion is based on the author’s experience that the functions of the
computer, if sufficiently novel, can be patented, as both a process and as
a structure for carrying out the function. Patent protection, however, is
time consuming and costly to obtain, and even more time consuming
and costly to enforce. In many cases, and especially in computer archi-

66. While this author recognizes the desirability of slow, deliberate legal change in
situations when significant and possibly undesirable social change would be engendered
by hasty, ill-considered laws, the author questions whether such slow change is desirable
when economic change or economic detriment is at issue.

212 COMPUTER/LAW JOURNAL [Vol. VI

tecture, the technology and the market have advanced before a patent
can issue. While patent protection is superior in the proper case, as
when truly significant innovations are involved and not just a slight ev-
olutionary improvement, it is not acceptable for many types of techno-
logical innovation. Even improvements that are slight or evolutionary
require capital investment, thus deserving protection.

Congress should, first of all, consider whether protection for a com-
puter’s instruction set is desirable as a matter of public policy. This
would resolve many questions of whether different computer architec-
tures (i.e., particular resource arrangements and microprograms for car-
rying out the instruction sets) deserve protection. This would prevent
the forcing of reliance on patent laws where protection may be slow in
coming or simply may not be available if the technical differences do
not amount to “invention” but are nonetheless economically important.

What may then be needed is a new sui generis law for microcode,
especially if Congress deems it important for those who created the
computer and invested in making it a commercial success to retain ex-
clusive domain over the instruction sets. The SCPA, hopefully, signifies
a recognition by Congress that sui generis laws are an appropriate and
convenient approach for handling rapidly changing technology when
important economic consequences are at stake.

At the very least, Congress should amend the SCPA or the Copy-
right Act so that it clearly states that microcode, however created, is
considered a protected work. There is already ample precedent in the
Computer Software Act of 198067 for amending intellectual property
laws to accommodate changing technology. If instruction set or
microcode protection is not desirable, then it is 2 simple matter to pro-
vide an amendment to this effect as well, so that computer makers
know where they stand. The matter of protection deserves considera-
tion by the body best suited for the task—Congress—instead of, as all
too often happens, forcing the issue on the overburdened courts.

67. See supra note 27.

1985] LEGAL PROTECTION OF MICROCODE 213

FIG. 1

Modern Multi-Level Computer Organization

Level 5: Problem oriented language level
("user applications”)

Translation (compiler)

Level 4: Assembly language level

Translation (assembler)

Level 3: Operating system machine level

l Partial interpretation by operating
system

Level 2: Conventional machine level
("machine language instruction set”)

J Interpretation by microprogram

Level 1: Microprogramminglevel
("microinstructions” or "microcode™)

Microprograms executed directly by
hardware

Level O: Digital logic circuitry level

214 COMPUTER/LAW JOURNAL [Vol. VI

FIG. 2

:Basic Machine Cycle

e iy al

Clock

Read (Memory Cycle)
Il [I I UL

Eetch Fetch X Fetch Y Eetch Put
Instruction Instruction inZ

FIG. 3

Instructions in instruction set: ADD X,Y (add the number contained
in the address following the instru-
ction (X) to the number following
in the next address (Y); leave the
results in the accumulator (ACC))

MOV ACCZ (move the contents of the
accumulator to the address
following the instruction)

ADD Steps MOV steps
1. Fetch the instruction from memory 1. Fetch the instruction
2. Put it in the instruction register/decoder 2. Place in instruction register
3. Decode the instruction to see what it is 3. Decode instruction
4. Fetch the number X 4. Transfer the contents of the
5. Place in register A accumulator to the
6. Fetch the number Y address following the
7. Place in register B instruction
8. Store the results of addition in

the accumulator

1985]) LEGAL PROTECTION OF MICROCODE 215

FIG. 4
[nputs
A B
Select 1 L
AorB
——— 2 -t - | Multiplexer
loutput
FIG. 5

Inputs (4 bit code)

[

4 -to - 16 decoder (selects one of sixteen possible
outputs based on input code)

lll}l4lsléllllllllll

1 2 7 & 9 10 11 12 13 14 15 16

N\

Outputs

216 COMPUTER/LAW JOURNAL [Vol. VI

FIG. 6
Exemplary CPU Architecture
Data
Bus M {nternal Data Bus (bidirectional)
-
R ‘L v
REGISTER A REGISTER B
Address _/ /
Bus M ALU
=, A [
R
Accumulator (ACC)
PC ‘I’
= ADD CONTROL STORE
o
|55 (FIG. 10)
=3
o ©“
£ 3| Mov
.5
Control =
Bus
READ <
WRITE | |
v/ Load Load | Load Inc
MBR A Ins MAR
(ext) Load Reg

MBR Load Load Load
(int) B MAR ACC

1985] LEGAL PROTECTION OF MICROCODE 217

FIG. 7

Resource

Possible Commands

1. Memory Buffer Register 1. Load MBR from external data bus
(MBR) 2. Load MBR from internal data bus
2. Register A 3. Load from internal data bus
3. Register B 4. Load from internal data bus
4. Instruction Register 5. Load from internal data bus
(INS REG) (decodes instructions)
5. Memory address register 6. Load from internal data bus
(MAR) 7 Increment (add 1 to contents)
6. Memory control é. Tell memory to READ from MAR address
READ, WRITE 9. Tell memory to WRITE to MAR address
FIG. 8
Microinstruction Type A
1 2 3 4 5 6 7 8 9 10
Load | Load | Load | Load | Load | Load | READ |WRITE| Incred Load
MBR | MBR [Regi- | Regi- Instr | MAR ment| ACC
(ext) | (inV) | ster | ster | Reg. MAR
A B

R

R

(Control lines to the various resources)

218 COMPUTER/LAW JOURNAL [Vol. VI

FIG. 9
STEP
Microinstruction

1 2 3 4 5 6 7 8 9 10

Load | Load | Load | Load | Load | Load | READ [WRITE| Incr | Load

ADD XY Xz‘R) l(v::‘R) A B ;:sg MAR MAR | ACC

1 Fetch instruction 0 0 o ol o 1 1 0 0 e !
2. Load data into MBR 1 0 0 0 0 0 0 0 0 0
3 Placein ins. reg. 0 0 0 o] 1 o} 0 o] 0 0
4 Decode 0 0 o] o] o] 0 o] 0 0 0
S Feteh X 0 0 0 0 o] 0 1 o] i o]
6.Loeddate into MBR | | 0 0 o] 0 0 0 0 0 o]
7. Placein A olol 1 |ofo]olo]o]o]o
8. Fetch Y 0 0 (o] 0 0 0 1 0 1 0
9. Loed deta into MBR 1 0 0 0 0 0 o] 0 0 0
10. Placein B 0 0 [o] 1 0 0 0 0 0 0
11. Load to ACC 0 0 0 0 0 0 0 0 0 1
MOV ACC, Z

12. Eetch instruction 0 0 0 0 i 1 0 0 0
13. Load date in MBR 1 0 0 0 0 0 0 0 0 0
14. Loadins. reg. 0 0 o] 0 1 0 0 0 o] 0
15. Decode 0 0 0 0 0 0 0 0 0 o]
16. Load ACC to MBR 0 1 0 0 0 0 0 0 0 0
17. Increment MAR 0 0 0 0 0 0 0 1 1 0

and write to
memory

LEGAL PROTECTION OF MICROCODE

219

1985]
FIG. 10
{
2 Micro-
3 CONTROL STORE program
.4 (10 bit microinstruction by - | counter
17 microinstructions deep) (MPC)
17
Microinstruction Register (MIR)
T
Control lines to resources
Load Ins. Reg.
internal II;.Sot;uC' ADD
data bus
> MoV

| Register

220 COMPUTER/LAW JOURNAL [Vol. VI

FIG. 11
STER
Microinstruction
ADD XY 1 2 3 4 5 6 7 8 9 10
(where{and Y Load | Loed | Load | Load | Load | Load | READ|VRITE| Incr | Load
contain eddresses MBR | MBR A B Ins. | MAR MAR | ACC
of dsta+o add) (ext) | (int) Reg.
1. Fetch instruction 0 0 0 0 0 1 1 0 (] 0
2. Load data into MBR 1 0 o) 0 0 0 o] 0 0 0
3. Place in ins. reg. 0 0 0 [+] 1 0 0 0 0 0
¢. Decode 0 0 o] 0 0 0 0 0 0
5. Fetch addressX 0 0 [o] [o] (o] o] 1 0 1 0
6. Load dsta into MBR 1 0 0 0 0 0 0 0 0 0
7. Save MAR in ACC 0 0 0o 0 0 0 0 0 0 1
8. Move MBR to MAR o] 0 0 0 0 1 1 0 0 (o]
9. Load data in MBR 1 0 0 0 0 0 0 ¢] 0 (o]
10. Move ACC to MAR 0 0 (o 0 0 1 0 o] 0 0
11. Move MBR to A 0 0 1 0 0 0 0 0 0 0
12. FetchaddressY 0 0 (o] 0 0 0 1 0 1 0
13. Load datain MBR 1 0 0 0 0 0 0 0 0 0
14. Save MAR in ACC 0 0 (o} o] o] 0 0 0 0 1
15. Move Y to MAR 0 0 o] o] 0 1 1 0 0 0
16. Loed dsta in MBR 1 0 0 0 0 0 0 (o] o] 0
17. Move ACC fo MAR 0 0] 0] 1 0 0 0 o’
18. Move MBR 10 B 0 o] (o} 1 0 0 0 0 0 0
19. Load results in ACC 0 0 0 0 0 0 0 0 1
FIG. 12
Microinstruction Type B
A I B | C READ WRITE { Incr.
(three bit code for MAR
register selection
T T T T

(control tines to decoder) (control lines to other resources)

Three-to-eight line decoder

Load Load
MBR Load A
(ext) MBR

(int)

STER

Different
Microinstruction
Types
CODE
000 Eetch instruction

001 Load data into MBR
010 Loadinstr.reg.
011 Fetchdsta (XorY)
100 Move MAR toACC
101 Move ACCto MAR
110 Move MBRto A

1985] LEGAL PROTECTION OF MICROCODE 221
FIG. 13
CONTROL STORE
(6 bits wide by
17 microinstructions tong)
Microinstruction Register (MIR)
allc]
(selects one of
seven possible registers based on 3-bit code)
Load Load READ WRITE Incr
Load instr. Load ACC MAR
B Reg. MAPR
FIG. 14
Microinstructions - stored in nanostore
1 2 3 4 3 6 7 8 9 10
Load | Load | Load { Load | Load | Load | READ |WRITE| Incr | Load
MBR | MBR A B Ins. | MAR MAR | ACC
(ext) | (int) Reg.
0 0 o] 0 1 1 0 0 0
1 0 0 0 0 o o 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0
o) 0 0 0 0 (o] 0 [o] 0 1
0 0 0 0 0 l (o] o] 0 0
0 (o] 1 0 o] O 0o (o] 0
o] 0 o] 1 (o] (o] 0 0 0

111 Move MBRto B

222

Steps

V-3 RN B - WV R AV e

PO I N el
WO IR W - O

Ccode

000
001
010
100
o011
001t
100
000
001
101
110
ol1
001
100
000
001
101
111
100

COMPUTER/LAW JOURNAL [Vol. VI
FIG. 15

Control Store for Nanoinstructions for ADD X,Y,
where X and Y contain addresses of data to add
(these codes may be considered “nanoinstructions”)

--- (* Note: this is a "do nothing"” instruction as used here;
it has no substantive effect and is chosen to
allow us to have & instead of g different
types of microinstructions)

	Legal Protection for Microcode and Beyond: A Discussion of the Applicability of the Semiconductor Chip Protection Act and the Copyright Laws to Microcode, 6 Computer L.J. 187 (1985)
	Recommended Citation

	Legal Protection for Microcode and beyond: a Discussion of the Applicability of the Semiconductor Chip Protection Act and the Copyright Laws to Microcode

