
UIC John Marshall Journal of Information Technology & Privacy UIC John Marshall Journal of Information Technology & Privacy

Law Law

Volume 27
Issue 3 Journal of Computer & Information Law
- Spring 2010

Article 3

Spring 2010

The Cathedral and the Bizarre: An Examination of the "Viral" The Cathedral and the Bizarre: An Examination of the "Viral"

Aspects of the GPL, 27 J. Marshall J. Computer & Info. L. 349 Aspects of the GPL, 27 J. Marshall J. Computer & Info. L. 349

(2010) (2010)

Michael F. Morgan

Follow this and additional works at: https://repository.law.uic.edu/jitpl

 Part of the Computer Law Commons, Intellectual Property Law Commons, Internet Law Commons,

Privacy Law Commons, and the Science and Technology Law Commons

Recommended Citation Recommended Citation
Michael F. Morgan, The Cathedral and the Bizarre: An Examination of the "Viral" Aspects of the GPL, 27 J.
Marshall J. Computer & Info. L. 349 (2010)

https://repository.law.uic.edu/jitpl/vol27/iss3/3

This Article is brought to you for free and open access by UIC Law Open Access Repository. It has been accepted
for inclusion in UIC John Marshall Journal of Information Technology & Privacy Law by an authorized administrator
of UIC Law Open Access Repository. For more information, please contact repository@jmls.edu.

https://repository.law.uic.edu/jitpl
https://repository.law.uic.edu/jitpl
https://repository.law.uic.edu/jitpl/vol27
https://repository.law.uic.edu/jitpl/vol27/iss3
https://repository.law.uic.edu/jitpl/vol27/iss3
https://repository.law.uic.edu/jitpl/vol27/iss3/3
https://repository.law.uic.edu/jitpl?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol27%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol27%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol27%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/892?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol27%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1234?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol27%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/875?utm_source=repository.law.uic.edu%2Fjitpl%2Fvol27%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@jmls.edu

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 1 28-SEP-10 10:21

THE CATHEDRAL AND THE BIZARRE:
AN EXAMINATION OF THE “VIRAL”

ASPECTS OF THE GPL

MICHAEL F. MORGAN*

“For it is possible long study may encrease, and confirm erroneous
Sentences: and where men build on false grounds, the more they build,
the greater is the ruine.”1

I. INTRODUCTION

The use of open source software in commercial products has become
commonplace during the last ten years. At first, open source software
was used primarily for internal deployments within universities and cor-
porate IT departments. These uses demonstrated the quality and useful-
ness of many software packages developed using the open source
methodology. With the growth of the Internet, high-quality,2 feature-
rich open source software has been used for increasingly important ap-
plications. For example, the most popular web server is and has long
been the Apache HTTP server.3 Various surveys have indicated that
open source programs are the leading products in the email server,4 DNS

* Michael F. Morgan. LaBarge Weinstein Professional Corporation, 515 Legget
Drive, Ottawa, Ontario, Canada K2K 3G4. The opinions expressed are those of the author
only.  Copyright Michael F. Morgan, 2009.

1. THOMAS HOBBES, LEVIATHAN 317 (Penguin Books 1985) (1651).
2. See generally ERIC S. RAYMOND, THE CATHEDRAL & THE BAZAAR: MUSINGS ON LINUX

AND OPEN SOURCE BY AN ACCIDENTAL REVOLUTIONARY (2001). Raymond characterizes the
quality advantages of open source software as follows: “Given enough eyeballs, all bugs are
shallow.” Id. at 30. This formulation is now known as Linus’s law, after Linus Torvalds
the primary developer of the Linux kernel. Id.

3. David A. Wheeler, Why Open Source Software / Free Software (OSS/FS, FLOSS, or
FOSS)? Look at the numbers!, ch.2 §1, (Feb. 16, 2007), http://www.dwheeler.com/
oss_fs_why.html#market_share (stating that Netcraft surveys have consistently shown the
Apache server as the number one web server since it first assumed that rank in April
1996).

4. Id. at ch.2 §22 (citing a survey by D. J. Berstein in 2001 that found the top three
programs in this category were unix sendmail (42%), Microsoft Exchange (18%), and qmail
(17%)). A Message Transfer Agent (MTA) is a program used to deliver email. Both
sendmail and qmail are available in source code, although qmail is generally not consid-

349

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 2 28-SEP-10 10:21

350 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

server,5 and reverse domain lookup6 categories. The successful use of
open source software in these applications drew the attention of commer-
cial software vendors. As a result, it is becoming more difficult to find
commercial software products that do not use open source software to
some extent. Because of increasing competition, including competition
from low-cost, offshore suppliers and the increased use of low-cost off-
shore developers, the use of large amounts of high-quality, royalty-free
software is seen as significant commercial advantage. Aside from the
obvious cost and time-to-market advantages, the use of open source
software can also allow commercial software vendors to take advantage
of widely-used standardized components, thereby allowing them to focus
their limited resources on value-added competitive differentiators.

Invariably, if a commercial software vendor decides to use open
source software, that vendor is going to have to decide whether to use
software licensed under the GNU General Public License (the “GPL”).
While the use of GPL-licensed software for internal deployments is rea-
sonably well understood, the use of GPL-licensed software with commer-
cially distributed software packages is much less well understood and is
the subject of many conflicting views. The most contentious issue re-
lated to the use of GPL-licensed software in commercial contexts is the
application of the so-called “viral” provisions of the GPL. These viral
provisions are purported to make distribution of a GPL-licensed program
contingent on a requirement to “license the entire work, as a whole,
under [the GPL] to anyone who comes into possession of a copy.”7 The

ered to be open source because its author has imposed restrictions on the distribution of
qmail modifications.

5. Id. at ch.2 §25 (citing a survey by Don Moore that found the “bind” DNS server was
used by approximately 70% of domains surveyed; commercial offerings in this category
were used in only about 25% of domains surveyed). A domain name server (DNS) is
software that takes human readable names like google.com and translates them to their
corresponding numeric IP address. For example, the IP address for google.com is
216.239.39.99.

6. Id. at ch.2 §24 (citing a survey by Bill Manning in 2000 that found 95% of all re-
verse domain resolution servers were using a variant of the open source program “bind”). A
reverse domain resolution server looks up an IP address to obtain a domain name. For
example, a reverse domain name lookup on 216.239.39.99 would return the domain name
google.com.

7. GNU Operating System, GNU General Public License, Version 3, §5(c), June 29,
2007, http://www.gnu.org/licenses/gpl-3.0.txt. Version 2 of the GPL contains a similar re-
quirement which provides that any “work based on the program also be licensed under the
GPL.” GNU Operating System, GNU General Public License, Version 2, §5(c), June 1991,
http://www.gnu.org/licenses/gpl-2.0.txt. One of the problems with the GPL is the variety of
terms used to characterize the “viral” provisions. For example, the GPL.v2 also refers to
“modifications”, “the Program or any derivative work under copyright law,” “a work con-
taining the Program or a portion of it,” “any work . . . that in whole or in part contains or is
derived from the Program or any part thereof,’ “identifiable sections of [a] work [that] are
not derived from the Program, and can be reasonably considered independent and separate

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 3 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 351

use and distribution of GPL-licensed software with commercial software
can potentially oblige a commercial software vendor to license its propri-
etary source code under the terms of the GPL to persons who have re-
ceived the corresponding binary product. Once that source code has been
licensed to someone under the GPL, the person or entity receiving the
source code will be entitled to make that source code available over the
Internet at no-charge for unlimited uses. The detrimental effect on the
market for an affected commercial software product is obvious.

Historically, the GPL has been a difficult document to understand.
Various commentators have described the GPL as a mixture of a legal
contract and an ideological manifesto,8 the constitution of open source,9
and “a threat to the intellectual property of any organization making use
of it.”10 Part of the difficulty in understanding the GPL is that earlier
versions of the license were drafted in a very casual style. The confusion
caused by this casual drafting is reflected in the varied and conflicting
opinions about the viral effects of the GPL.11 Unfortunately, while much

works in themselves,” “derivative or collective works based on the Program,” “work[s] writ-
ten entirely by you,” and “mere aggregation[s].” Id.

8. Andrés Guadamuz González, Viral Contracts or Unenforceable Documents? Con-
tractual Validity of Copyleft Licenses, 2004 EUROPEAN INTELL. PROP. REV. 331, 333 (2004),
available at http://opensource.mit.edu/papers/guadamuz.pdf.

9. ROD DIXON, OPEN SOURCE SOFTWARE LAW 30 (2004).
10. Craig Mundie, Senior Vice President, Microsoft Corporation, Prepared Text of Re-

marks at the New York University Stern School of Business, (May 3, 2001), available at
http://www.microsoft.com/presspass/exec/craig/05-03sharedsource.mspx.

11. Chris Nadan, Risks Associated with Open-Source Licensing and Usage, 19 COM-

PUTER L. ASSOC. BULL. 53, 56 (2004):
The most pernicious urban legend is that dynamic linking is not viral under GPL.
The GPL is rather ambiguous about whether proprietary code dynamically linked
to GPL code becomes contaminated (dynamic linking is where the interaction be-
tween GPL code and non-GPL code occurs only at runtime.) . . . There is a hearty
debate in the open-source community about the contaminating effect of dynamic
linking. The open source community typically claims that such linking does not
contaminate. The question I would pose to you, as a legal advisor, is: Maybe
they’re right, maybe they’re not. But can your client afford to be the test case? Id.

Jason B. Wacha, Open Source, Free Software, and the General Public License, 20 COMPUTER

& INTERNET LAW 20, 22-23 (Mar. 2003):
In determining whether an application can remain proprietary, the licensing sta-
tus of the library to which the application is linked is of key importance. The
accepted practice in the open source community is that an application linked to a
GPL library must itself be licensed under the GPL. An application linked to a non-
GPL (including LGPL) library can remain proprietary. (footnotes omitted).
. . ..
[T]here is a distinction between static and dynamic loading. Static loading is typi-
fied by a driver that is designed to boot up together with the Linux kernel so that
it essentially loads as a single image with the kernel. Conversely, dynamic drivers
do not load when the kernel boots up; they load only later, in run time, when they
are needed by the user, by a specific application, or by another kernel module. Id.

LAWRENCE ROSEN, OPEN SOURCE LICENSING: SOFTWARE FREEDOM AND INTELLECTUAL PROP-

ERTY LAW 121-22 (2005) (stating that “the legal analysis of what constitutes a derivative

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 4 28-SEP-10 10:21

352 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

of the language in the GPL has been improved in version 3 (the
“GPL.v3”), these changes do not appear to have clarified the viral provi-
sions.12 Despite the lingering confusion about the potential viral effects

work simply doesn’t depend on the style or mechanism of inter-program linking.”). Id. at
287. “Nothing in the law of copyright suggests that linking between programs is a determi-
native factor in derivative work analyses by courts—except perhaps as evidence of one of
the abstract, nonliteral, copyrightable aspects of the software, such as program architec-
ture, structure, and organization.” Id. “It is highly doubtful that the dynamic linking by a
proprietary application to a GPL’ed library would normally result in a derivative work of
the original licensor.” DIXON, supra note 9 at 32-33:

The OSI interpretation suggests that a completely separate proprietary program
will become GPL if it merely shares data with GPL code, even if the only such
sharing occurs while the program is actually running. This phenomenon—that
proprietary code becomes open source whenever combined with open source code—
is the so-called “viral effect” of the copyleft licenses. Like a virus, GPL code infects
any proprietary code with which it is combined, turning it into GPL code as well.
(footnotes omitted). Nadan, supra note 11, at 360.

In annotation #9 to the Open Source Definition, the Open Source Initiative (the “OSI”) said
that “the GPL is conformant with this requirement. GPLed libraries ‘contaminate’ only
software to which they will actively be linked at runtime, not software with which they are
merely distributed.” Open Source Initiative, Open Source Definition, Version 1.8, http://
web.archive.org/web/20010330062316/www.opensource.org/docs/definition.html (last vis-
ited Apr., 26, 2009). Subsequently, the OSI amended this annotation to state “the GPL is
conformant with this requirement. Software linked with GPLed libraries only inherits the
GPL if it forms a single work, not any software with which they are merely distributed.”
Open Source Initiative, Open Source Definition, Version 1.9, http://www.opensource.org/
docs/definition.php (last visited Apr. 26, 2009):

The FSF’s position that the GPL is “a license not a contract” probably means that
the FSF cannot successfully seek injunctive relief to force anyone to lay open-
source [sic] code. The fact that it does not charge license fees for its software proba-
bly means it cannot seek damages based on the amount of a reasonable royalty —
though it could still rely on statutory damages. So the FSF’s position — comply or
stop using our stuff — is, quite neatly, mostly what they could get under the law.
Heather J. Meeker, Open Source and the Legend of Linksys, LINUS NEWS:TECH

BUZZ, June 28, 2005, http://www.linuxinsider.com/story/43996.html?wlc=1240785
572.

12. Jonathan Schwartz, The Participation Age, JONATHAN’S BLOG, Apr. 28, 2005, http://
blogs.sun.com/jonathan/date/20050404:

[T]he GPL expressly limits choice by disallowing the inclusion of non-GPL code
into GPL projects - and exports a form of IP colonialism to nations seeking to cre-
ate their own means of production.
. . . .
And having just spent some time with a breadth of network equipment OEM’s at
the GSM World Congress; and a series of representatives from developing nations
at a recent customer event – I can assure you they are both suspicious of richly
valued companies, with enormous patent portfolios and legal teams, evangelizing
the benefits of the GPL and the elimination of software patents. They’re begin-
ning to see it as a means of forcing them to disgorge their intellectual property,
and convey it to those same richly valued companies. Free software they under-
stand: they also understand exploitation).

Richard Stallman, President, Free Software Foundation, Transcript of Richard M Stall-
man’s speech at New York University (May 29, 2000), available at http://www.gnu.org/
events/rms-nyu-2001-transcript.html:

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 5 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 353

of the GPL, it remains the license of choice for a majority of “open
source”13 projects. Furthermore, there is no reason to believe this situa-
tion is going to change any time soon.

Given the uncertainty about GPL viral effects and the potentially
serious consequences for a commercial product, one would expect that
GPL-licensed software is never used with commercial products. How-
ever, this is not the case.14 GPL-licensed software can find its way into
commercial products in a number of ways. Perhaps the most common
way is through simple inadvertence. A software designer faced with an
impending deadline and a requirement for a large but competitively un-
important piece of functionality may after searching the Internet find a
software package that provides exactly the functionality he or she re-
quires, and, even better, this software has been tested and appears to be
bug-free. The license, to the extent it is even examined, is confusing but
talks at length about being free. With a release deadline approaching, a
designer may simply decide to use the GPL-licensed software. The de-
signer’s problem is solved, but his or her employer’s problems may be
just beginning.

Another way in which GPL-licensed software can be used in a com-
mercial product is through a reasoned (and likely difficult) decision. The
viral provisions of the GPL will only apply to another software program
if that program is “combined” with GPL-licensed software in certain
ways. The Free Software Foundation (the “FSF”) has stated that certain
types of program-to-program interactions will not engage the viral provi-
sions of the GPL. Accordingly, there are at least some situations in
which GPL-licensed software can be used safely with commercial
software. However, the various ways in which programs interact, the

The freedoms to change and redistribute this program become inalienable rights—
a concept from the Declaration of Independence. Rights that we make sure can’t
be taken away from you. And, of course, the specific license that embodies the idea
of copyleft is the GNU General Public License, a controversial license because it
actually has the strength to say no to people who would be parasites on our
community.

13. The term “open source” is used here simply to describe a software development
project that makes source code available to users. For a discussion of the differences be-
tween the “open source” movement and the “free software” movement, see Eric S. Raymond,
The Revenge of the Hackers, in OPENSOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION

207 (Chris DiBona et al. eds., 1999), and Richard Stallman, The GNU Operating System
and the Free Software Movement, in OPENSOURCES: VOICES FROM THE OPEN SOURCE

REVOLUTION 53 (Chris DiBona et al. eds., 1999).
14. See, e.g., Daniel Lyons, Linux’s Hitmen, FORBES.COM, Oct. 14, 2003, http://

www.forbes.com/2003/10/14/cz_dl_1014linksys_print.html; Progress Software Corp. v.
MySQL AB, 195 F. Supp. 2d 328 (D. Mass 2002); Welte v. Sitecom Deutschland GmbH, No.
21 0 6123/04 (Landgericht Muenchen I) (May 19, 2004); District Court of Munich, 12 July
2007, case 7 O 5245/07 (Welte v. Skype Technologies S.A.), available at http://www.ifross.de/
Fremdartikel/LGMuenchenUrteil.pdf.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 6 28-SEP-10 10:21

354 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

copyright law relevant to these interactions, and the scope of copyright
protection for APIs, data structures, client-server protocols and other
components of a typical software package make it difficult to determine
whether a particular interaction is safe.

OUTLINE

While there is a growing body of literature dealing with the GPL, the
potential viral effects of the GPL do not appear to have been analyzed in
a detailed technical manner. This paper will attempt to demonstrate
that a proper legal analysis of the viral effects of the GPL is dependent
on a detailed technical understanding of the specific mechanisms used
for each type of program-to-program interaction. Once these technical
mechanisms are properly understood it will then be possible to identify
the applicable copyright law needed to assess the viral effects of the
GPL.

The technical analysis in this article will consist of an examination
of the three main ways in which computer programs interact: static link-
ing, dynamic linking, and inter-process communication. Section 2 of this
paper will provide a detailed technical description of these types of pro-
gram-to-program interactions. Subsection 2.A will start with a relatively
high-level description of program linking. This subsection will explain
why programs are linked, describe the various tools used for linking, and
provide a basic description of linking. The next two subsections, 2.B and
2.C, will provide a detailed description of static and dynamic linking in a
typical UNIX environment.15 Subsection 2.D will conclude the technical
analysis with a detailed description of inter-process communication.

Section 3 will build on the technical information provided in Section
2 with the goal of identifying the areas of copyright law relevant to an
analysis of the viral effects of the GPL. This analysis will start in Sub-
section 3.A with an examination of those parts of the GPL that have been
characterized as viral. This examination will show that the derivative
works right is crucial to understanding the viral effects of the GPL. In
Subsection 3.B, the derivative works right and related jurisprudence will
be examined. Subsection 3.C will use the derivative works jurisprudence
to assess the viral effects of the GPL for statically linking. This analysis
will conclude that basic copyright principles can be used to reach defini-
tive conclusions about the viral effects of the GPL when statically link-
ing. In Subsection 3.D, the viral effects of the GPL for dynamic linking
will be examined. Unlike the case with static linking, an analysis of dy-

15. There are some technical differences between linking mechanisms and formats
across computing environments. However, these differences are unlikely to have any copy-
right significance. For simplicity, this paper will consider the ELF file format as used on a
UNIX operating system.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 7 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 355

namic linking will require an understanding of a number of complex ar-
eas of copyright law. In particular, the scope of copyright protection for
technical interfaces will need to be examined, which, in turn, will require
an examination of copyright protection for methods of operation and data
structures. Finally, Subsection 3.E will examine GPL viral effects in in-
ter-process communication. As in the case of dynamic linking, copyright
law related to technical interfaces and data structures will be crucial in
understanding the viral effects of the GPL in inter-process communica-
tion. In each of Subsections 3.C, 3.D and 3.E, the expected viral effects of
the GPL will be described. In areas where the law is unsettled, the open
questions will be identified and suggestions will be made about how a
court might answer these questions. In each case, expected or projected
viral effects of the GPL will be compared to statements made by the FSF.

II. PROGRAM-TO-PROGRAM INTERACTIONS

Software is generally understood to exist in two formats: source code
and object code.16 Source code can be read and understood by humans
and is the preferred format for programming. Object code can be read
and processed by computers and is the format used by computer hard-
ware when executing a program. The existing jurisprudence and legal
literature have used these traditional classifications because this level of
detail has generally been sufficient for assessing copyright issues to date.
However, when assessing GPL viral effects, and in particular when try-
ing to determine whether one computer program is a derivative work of
another, it becomes necessary to examine all software formats in much
greater detail. Specifically, various intermediate software formats will
need to be examined to fully understand the copyright consequences of
certain steps in static and dynamic linking.

A. LINKING

Many programs contain hundreds of thousands and sometimes mil-
lions of lines of source code. These programs are usually developed and
worked on continuously by multi-person design teams. Consequently, it
is generally not practical to keep the source code for a program in a sin-
gle file. As a result, most programs consist of multiple files called mod-
ules. Organizing a program in this way provides a number of benefits.
For example, multiple programmers can work on different modules
within the same program without having to worry about overwriting
each other’s changes. Additionally, changes to one module will generally

16. This description ignores interpreted languages. As discussed later, a classification
into only source code and object code form is a simplification since compilation involves the
creation of a number of intermediate file formats between the source and object code
formats.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 8 28-SEP-10 10:21

356 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

not necessitate changes to other modules.17 Finally, the segregation of
various discrete functions within separate modules will generally result
in stronger, more robust architectures.18 Because computer programs
are almost always developed as a collection of separate modules, a mech-
anism is needed to combine these modules to create a final product.

Linking is the process of gathering and combining various code and
data items into a single file that can be loaded into computer memory
and executed.19 Instead of requiring every application to consist of one
large monolithic file, linking allows software to be developed in multiple
files. This approach to software development has numerous advantages.
Among these advantages is the ability to modify and separately compile
portions of a large program. Instead of having to go through the time
consuming task of recompiling all of the files in a large program, linking
allows a developer to re-compile only modules that have been changed.
These modules can be then re-linked with the unmodified portions of the
program, saving significant time and effort. In return for the advantages
provided by linking, there is added complexity in the object file structure.
However, this complexity is generally hidden from programmers and
handled by compilers, linkers and loaders. Currently, there are two
main linking techniques. The first technique is called static linking.
Static linking is generally understood to mean linking at program-devel-
opment time so that the resulting object code program can be loaded and
executed without any further linking-related activity. The second tech-
nique is called dynamic linking. Dynamic linking is understood to mean
a process in which a portion of the linking is done at development-time,
but most of the linking is done at program load or run-time.20

Most current compilation systems provide software developers with
a compiler driver.21 This tool will run a language preprocessor, compiler,
assembler and linker that collectively convert a high-level source code
program into an executable program.22 A well-known example of this
type of program for the GNU compilation environment is gcc. The gcc

17. However, some changes, such as a change to a definition of a widely used data
structure can create a need to recompile other modules using that data structure.

18. Organizing modules in this way allows data hiding and will force other parts of a
program to interact with a particular module in a defined and regulated manner. Pro-
grams developed in this way are generally of higher quality because of the reduced chance
of defects due to unexpected or unpermitted interactions.

19. RANDEL E. BRYANT & DAVID R. O’HALLARON, COMPUTER SYSTEMS: A PROGRAMMER’S
PERSPECTIVE 540 (2003).

20. Id. at 567. All linking that can be done at development-time based on the informa-
tion then available is performed. In addition, the data structures and bookkeeping infor-
mation needed to allow the remaining load and run-time linking to be performed are also
created and added to the object file.

21. Id. at 541.
22. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 9 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 357

compiler includes a C preprocessor (cpp), a C compiler (cc1), an assem-
bler (as) and a linker program (ld).23 To help illustrate some of the func-
tions performed by these tools and to better describe the structure of an
object code file, the internal programming statements needed to allow a
source code file to be statically linked to a GPL-licensed library need to
be described.

At the source code level, calling a GPL-licensed program from a non
GPL-licensed program requires the inclusion of a reference to the name
of the GPL-licensed program. The compiler driver uses this reference to
locate the program being called. In the C and C++ programming lan-
guages, this reference is made using an include statement.24 An actual
call to a specific routine within a GPL-licensed program or a reference to
a specific global variable within a GPL-licensed program is done using
the symbolic name for that routine or variable. The use of include state-
ments, procedure calls and variable references is the same for both static
and dynamic linking.

B. STATIC LINKING

As described earlier, static linking is a process by which code and
data are combined at build-time to create a completely linked executable
file. This means the final executable program is fully linked prior to exe-
cution by an end user. A static linker such as the UNIX ld program
takes as input a collection of relocatable object files and various com-
mand line arguments and generates a fully linked executable object code
file that can be loaded and run without any further linking.25 To under-
stand this process, one needs to understand the various types of object
files, their functions, and their formats. In a UNIX environment there
are three types of object files: relocatable object files; executable object
files; and shared object files.26 Relocatable object files contain binary
code and data in a form that can be combined with other relocatable ob-
ject files at compile-time to create an executable object file.27 Executable
object files contain binary code and data in a form that can be copied
directly into computer memory and executed.28 Shared object files are a
special type of relocatable object file that can be loaded into computer
memory and dynamically linked either at load-time or at run-time.29

Shared object files will be discussed in more detail in Section 2.C.

23. Id. at 541-42.
24. In the Java programming language this function is performed by an “import”

statement.
25. Id. at 542.
26. BRYANT & DAVID R. O’HALLARON, supra note 19, at 543.
27. Id.
28. Id.
29. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 10 28-SEP-10 10:21

358 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

At a high level, a typical relocatable object file is simply a sequence
of bytes. Some of these bytes represent program code, other bytes re-
present program data, and still other bytes represent data used by the
linker and loader to modify the program and its data so the program can
be executed on a particular computer and operating system. The two
main tasks performed by linker and loader systems are symbol resolu-
tion and relocation.30 When a program is built from multiple modules,
references from one module to another are made using symbols.31 These
symbols can represent various program constructs such as procedures,
functions, and variables. The purpose of symbol resolution is to associ-
ate each symbol reference with exactly one symbol definition.32 The
other main task of a linker is relocation. Relocation is a process in which
various memory references are adjusted so they refer to the actual loca-
tion where a particular program component will be when the program is
loaded into computer memory.33 This process is challenging because
when assembly is done the assembler does not know where a program
will be located in memory.34 Compilers and assemblers usually generate
code and data blocks assuming a program will be loaded starting at ad-
dress zero.35 This assumption is almost always incorrect; therefore, all
symbol references must be revised prior to execution so they point to the
proper execution-time memory location.36 These corrections are done us-
ing various structural characteristics of a relocatable object file; hence, it
is important to understand that structure in order to understand the re-
location process.

The following is the format of an Executable and Linking Format
(“ELF”) relocatable object code file:37

30. Id. at 575.
31. Even when references are made from one part of a subprogram to another part of

that subprogram, those references are made with symbols.
32. BRYANT & O’HALLARON, supra note 19, at 548.
33. JOHN R. LEVINE, LINKERS & LOADERS 149.
34. BRYANT & O’HALLARON, supra note 19, 558.
35. LEVINE, supra note 33, at 5.
36. Id.
37. BRYANT & O’HALLARON, supra note 19, at 544 (2003). This chart is reprinted in its

entirety from Computer Systems. Id. ELF is a popular format used in the Linux and BSD
variants of UNIX. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 11 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 359

ELF header
.text
.rodata
.data
.bss
.symtab
.rel.text
.rel.data
.debug
.line
.strtab
Section header table

The .text section contains machine code generated by a compiler.38

This part of an ELF file contains the actual instructions to be executed
by a computer processor. The .rodata, .data, and .bss sections contain
various types of data. The .data and .bss sections respectively contain
initialized and uninitialized global variables.39 The .rodata section con-
tains read-only data, such as format strings for printf statements and
jump tables for switch statements.40 As will be seen in the subsequent
legal analysis, the .text section is particularly relevant for analyzing the
GPL-related consequences of static linking. The .rodata, .data, and .bss
sections are not particularly relevant from a legal perspective.

The next parts of an ELF file are the .symtab or symbol table and
the relocation information, which consists of the .rel.text section and the
.rel.data section.41 A module’s symbol table contains information about
the symbols defined in that module and symbols referenced by that mod-
ule.42 In general, the entries in a module’s symbol table will be nonstatic
C functions and global variables defined without the static attribute.43

The symbol table will also contain entries for external variables and
other modules referenced by that module.44 Finally, the symbol table
contains entries for symbols defined and referenced exclusively within
that particular module.45 (Examples of these types of entries are func-
tions or variables defined using the static attribute). Each symbol table
entry contains information about the applicable symbol, such as the

38. BRYANT & O’HALLARON, supra note 19, at 544.
39. Id.
40. Id.
41. Id.
42. Id.
43. Id. at 545.
44. BRYANT & O’HALLARON, supra note 19, at 545.
45. Id. at 546.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 12 28-SEP-10 10:21

360 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

name, location, size and type (usually either data or function).46

In addition to the symbol table, an ELF object file contains reloca-
tion information for both the .text (program code) and .data sections.47

The rel.text section contains a list of locations within the .text section
that will need to be modified when the applicable module is linked with
other modules to form an executable program.48 Similarly, the rel.data
section contains relocation information for any global variables refer-
enced or defined within that module.49

The .debug section and the .line section contain information used to
assist programmers when debugging.50 Specifically, the .debug section
contains a debugging symbol table. This symbol table is more extensive
than the one contained in .symtab.51 The debugging symbol table con-
tains additional entries for items such as local variables and typedefs
defined in the program.52 The .line section contains information to map
between line numbers in the original C program and machine code in-
structions in the .text section.53

Once the relocatable the object files needed to create an executable
file have been generated, the next step is to run the linker with all of
those relocatable object files as input. Typically, programs will use ge-
neric functions maintained in object code repositories called static librar-
ies.54 Any static libraries used by a program must also be input to the
linker.55 The linker will resolve all symbol references and associate each
reference with exactly one symbol definition in the symbol tables for the
input relocatable object files and static libraries.56 Symbol resolution
can be difficult, particularly when there are multiple conflicting defini-

46. Id. at 546-47. Symbol name storage is somewhat complex. Id. The symbol table
entry for a symbol name is a byte offset into another table called the string table. Id. An
offset in a symbol table entry points to the location of the corresponding name in the string
table. Id. This additional level of complexity does not have any legal significance. Id. The
key legal point is that the names of externally defined symbols are located somewhere in an
object file. Id.

47. BRYANT & O’HALLARON, supra note 19, at 545.
48. Id.
49. Id.
50. Id.
51. Id.
52. Id.
53. BRYANT & O’HALLARON, supra note 19, at 545.
54. Id. at 553. In practice, all compilation/linking systems provide a way to package

related object files into a single file called a static library. Id. A typical example of such a
library system is the ANSI C libc.a library, which contains numerous functions for per-
forming operations such as standard input/output, string manipulation, and integer math
functions. Id.

55. BRYANT & O’HALLARON, supra note 19, at 555-56.
56. Id. at 556.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 13 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 361

tions in the input object files and static libraries.57 Fortunately, a de-
tailed understanding of how these conflicts are resolved is not needed to
determine whether the resulting executable file is a derivative work of
the linked object files and static libraries.58

During the symbol resolution phase a linker will scan all of the input
object files and static libraries trying to resolve the symbol references
that need to be relocated.59 If a reference to a symbol is found in the
symbol table of a particular object file, then that object file is added to
the list of object files needed to form the executable.60 The addition of an
object file to this list will mean that the symbols in that object file will
also need to be resolved.61 Resolution of these symbols may in turn re-
quire the addition of other object files.62 This process will iterate until
all symbols have been resolved and all object files required to create the
executable have been identified.63 From a legal perspective the impor-
tant point is that these object files will be copied into the resulting exe-
cutable file.

In addition to single object files, static libraries (also called archives)
can also be provided as input to linkers.64 If a static library is input to a
linker, the linker will attempt to match unresolved symbols against sym-
bols defined by the members of that library.65 If a member of the library
contains a definition for an undefined symbol, then the object file for that
member is added to the list of object files needed to form the execut-
able.66 Once again, an added object file may contain unresolved symbols
that will need to be resolved using other object files in the same or other
archives.67 This process will repeat until all symbols have been re-
solved.68 After all symbols have been resolved, the list of object files
needed to create the executable will have been identified and an execut-
able can be created.69 If there are any undefined symbols after all of the
input object files and archives have been examined, then an error has
occurred and an executable will not be created.70

57. Id.
58. Id.
59. Id.
60. Id.
61. BRYANT & O’HALLARON, supra note 19, at 556.
62. Id.
63. Id.
64. Id.
65. Id.
66. Id.
67. BRYANT & O’HALLARON, supra note 19, at 556.
68. Id.
69. Id.
70. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 14 28-SEP-10 10:21

362 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

Once all symbols have been resolved and a complete list of required
object files has been determined, the linker will merge all like sections
from all of these object files.71 Thus, all of the code sections (.text) and
data sections (.rodata and .data) are merged into single code and data
sections. As described above, for code from archive files, only those ob-
ject files needed to resolve unresolved symbol references are copied into
the executable file. Once all of the sections have been merged, the linker
can determine the starting address of each section and compute the final
absolute addresses of the symbols in the executable.72 This is done by
processing the code and data relocation information (the .rel.text and
.rel.data) information, which specifies the locations in the code and data
sections that need to be updated.73 Once this relocation has been done,
the executable object file is in a form that can be copied from disk into
computer memory for execution. For an ELF file, the format of a stati-
cally linked executable is as follows:74

ELF header
Segment header table
.init
.text
.rodata
.data
.bss
.symtab
.debug
.line
.strtab
Section header table

Read-only memory
segment
(code segment)

Read/write memory
segment
(data segment)

Symbol table and
begugging info
(not loaded into
memory)

71. Id. at 557.
72. BRYANT & O’HALLARON, supra note 19, at 557. On Linux systems, the code seg-

ment always starts at address 0x08048000. Id. The data segment starts at the next 4-KB
aligned address after the code segment. Id. Since the size of the code segment and all of the
data segments are known, and since the starting address of the code and data segments are
known, the absolute and relative addresses of all symbols in the executable can be deter-
mined. Id.

73. Id. at 558. ELF files have 11 relocation types that describe the various addressing
modes the linker needs to handle. Id. The most common relocation types are R_386_PC32
(relocate a reference using a 32-bit PC-relative address) and R_386_32 (relocate a reference
using a 32-bit absolute address). Id. A PC relative address is an addressing mode in which
the target address is an offset from the current run-time value of the program counter (PC).
Id. For this type of addressing mode, the target address is calculated by adding a 32-bit
value to the current value of the PC (which always contains the address of the next instruc-
tion in memory). Id. An absolute address refers to a specific location in memory. Id. Hence
the target address for an absolute address is a 32-bit value encoded in the instruction. Id.

74. BRYANT & O’HALLARON, supra note 19, at 563.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 15 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 363

The first thing to notice about a statically linked ELF executable is
that it does not contain any relocation information. Also, as compared to
a relocatable object file, there is a new section called .init that contains a
small function used to call program initialization code.75 ELF ex-
ecutables are also organized to be easy to load into memory with all of
the parts that are actually loaded into memory contained in contiguous
segments.76 Finally, while the symbol table is not loaded into memory
for execution, it is still a part of the executable file.77 As will be recalled,
the symbol table contains (together with the .strtab segment) all of the
symbols used by a program, including symbols that are imported from
external files.

An executable object code file can be run on a UNIX system by typ-
ing its name in a shell command line.78 The shell79 will recognize that
the executable name is not a built-in shell command and will attempt to
run the executable by invoking the operating system loader.80 The oper-
ating system loader copies the code and data from the executable object
file into memory and then runs the program by jumping to the entry
point specified in the ELF Header.81 The startup code for all C programs
is the same and is contained in the crt1.o file.82 The crt1.o file contains
code that calls the initialization routines in the .text and .init sections.83

The startup code in the crtl.o file also calls the atexit function, which
appends a list of routines to be called when the executable calls the exit
function.84 Once this has all been done, the startup code calls the exe-
cutable’s main routine and execution commences in the actual execut-
able file.85 After the file finishes normal execution, it will call the exit
routine, which runs the list of routines created by the atexit function and
then returns control to the operating system.86

From a technical perspective, the creation of a statically linked file is
relatively complex. However, as will be discussed later, the legal analy-

75. Id.
76. Id.
77. Id.
78. Id. at 564. There are also other ways to invoke a program from another program,

such as, for example, using the “exec” function.
79. In UNIX and other similar operating systems, the term “shell” is used to describe

an interface between a user and the operating system. The term is typically associated
with a text-only user interface. The primary function of a shell is to read and execute
commands typed into a terminal.

80. BRYANT & O’HALLARON, supra note 19, at 564.
81. Id.
82. Id.
83. Id.
84. Id. at 564-65.
85. Id. at 565.
86. BRYANT & O’HALLARON, supra note 19, at 565.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 16 28-SEP-10 10:21

364 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

sis for determining whether a statically linked executable is a derivative
work of a GPL-licensed library to which it has been linked is relatively
straightforward. For completeness sake, each of the various types of
files used to create a statically linked executable should also be consid-
ered in the derivative works analysis. These files consist of the source
file, the ASCII intermediate file, the assembly language file, the relocat-
able object file, and the final executable object file.

The source code file will generally have a number of include state-
ments in the form “#include <filename>“ where “<filename>“ is the name
of a GPL-licensed library to be linked and used by the calling program.
Include statements are used to allow a calling program to locate symbols
from external programs, modules or libraries. Typically, an include
statement will reference a “header” file containing definitions for data
structures, procedure and function calls and global variables made exter-
nally available by a program, module, or library. In addition to include
statements, a source code file may also contain actual uses of the sym-
bolic references to various procedures, functions, data structures and
other objects exported or made externally available by a GPL-licensed
program, module or library.

References to symbols exported by a GPL-licensed program will, in
the case of symbols for procedures and functions, allow a calling program
to make actual use of the capabilities provided by the code associated
with those symbols. A program calling a GPL-licensed library may also
make use of data structure definitions that specify the way certain data
access operations are performed or the way certain memory locations are
used. The use of external symbolic references by calling programs will
vary from case to case. Therefore, a determination of the legal signifi-
cance of such uses will require a fact-dependent analysis in each case.

An intermediate ASCII file is created by running the C preprocessor.
If run separately, the C preprocessor will generate a file with an “.i” ex-
tension. Normally, when a compiler driver is invoked, the intermediate
ASCII file is not readily apparent to a software developer since this for-
mat is only an intermediate stage in the creation of an object file. (It is
normally only created in and utilized from a temporary directory). As
discussed above, source code files normally contain a number of include
statements. An include statement is a directive to the C preprocessor to
cause the include statement to be replaced with the entire contents of the
file name referred to in that statement. When linking to a GPL-licensed
program, the C preprocessor will cause the contents of header or defini-
tions files associated with that GPL-licensed program to be copied into
the .i file of the linking program. The resulting .i file is the same as the
source code file for the program except it includes all the definition files
referenced using include statements.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 17 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 365

The next step in the static linking process is compilation.87 This
step is complex and consists of multiple stages. For a typical compiler,
the main stages are: lexical analysis; syntax analysis; semantic analysis;
intermediate code generation; code optimization; and code generation.88

The lexical analysis phase separates characters of the source language
into logical groups called tokens.89 These tokens are passed to the next
phase, which is the syntax analyzer or parser. The syntax analyzer uses
tokens to create an intermediate representation (typically a syntax tree)
depicting the grammatical structure of the token stream.90 The seman-
tic analyzer checks the syntax tree to confirm that the program being
compiled has been written in accordance with the rules of the source lan-
guage.91 After this is done, the intermediate code generator takes the
syntax tree and generates a low-level or machine-like intermediate rep-
resentation.92 This intermediate representation is then analyzed for op-
portunities to improve code efficiency.93 The final phase of compilation
is assembly code generation.94 In addition to these operations, the com-
piler is also responsible for various table management or bookkeeping
functions.95 The most important of these functions is the creation of the
symbol table.96 When a compiler is invoked, it typically generates an
ASCII assembly language file. The code in an assembly language file
may embody non-literal elements copied from linked GPL-licensed pro-
grams, modules or libraries.

During the next phase, the compiler driver invokes the assembler.
The assembler translates the ASCII assembly language file into a relo-
catable object file. One of the primary functions during this phase is the
translation of the assembly language code into machine code.97 The as-
sembler will also include data in the relocatable object file that specifies
where the object code needs to be modified to reflect the final location of a
particular symbol. The linker will subsequently use this information to

87. ALFRED V. AHO, MONICA S. LAM, RAVI SETHI & JEFFREY D. ULLMAN, COMPILERS:
PRINCIPALS, TECHNIQUES, & TOOLS 1 (2006) (stating “a compiler is a program that can read
a program in one language - the source language - and translate it into an equivalent
program in another language - the target language”).

88. Id. at 5-11.
89. Id. at 6.
90. Id. at 8.
91. Id.
92. Id. at 9.
93. AHO, LAM, SETHI & ULLMAN, supra note 87, at 10.
94. Id.
95. Id. at 11.
96. Id.
97. After this translation, the code will consist of 0’s and 1’s that can be read directly

by a computer, as opposed to the mnemonic symbols of a particular machine’s assembly
language, which cannot be read directly by a computer.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 18 28-SEP-10 10:21

366 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

“fix up” these locations once actual symbol addresses are known. As was
the case with earlier intermediate files, this file will contain the symbol
names being used from any linked GPL-licensed programs, modules or
libraries. This file may also embody non-literal portions of any linked
GPL-licensed programs, modules or libraries.

The final phase of compilation involves the invocation of the linker.
This step causes the creation of an executable object file. Once again, the
executable object file will contain the various symbols referenced from
any linked GPL-licensed programs, modules or libraries. The code from
the calling program may also contain non-literal elements from any
linked GPL-licensed programs, modules or libraries. The linker will also
copy all of the relocation information from the linked files into the exe-
cutable file. Finally, and most importantly, the executable object file will
contain executable code from the GPL-licensed programs, modules and
libraries it uses.98 This is the sine qua non for static linking.

C. DYNAMIC LINKING

Dynamic linking is another method for combining modules. Dy-
namic linking was developed to address some weaknesses of static link-
ing. Most of these weaknesses are trade-offs for other useful
characteristics of static linking. For example, static linking ensures that
an executable is self-contained and does not require a particular set of
libraries to be present on the machine on which the executable is being
invoked.99 This means the executable invoked is the one actually tested
by the developer. Accordingly, when static linking is used, the environ-
ment in which an executable is invoked is less likely to affect its
behavior.100

Despite these benefits, static linking also suffers from a number of
drawbacks. For example, the self-contained nature of statically linked
programs means it can be difficult to update libraries on which those
programs depend.101 However, the most significant drawback of stati-
cally linked files is memory usage. A statically linked file contains all of
the code of all of the library routines it utilizes. This means a statically
linked executable will require more disk space when stored, more mem-

98. Code from a library or module is only included in an executable object file for a
program if that program actually calls routines from that library or module. However, it is
reasonable to assume this will happen for most non-trivial uses of a library or module.

99. Christian Collberg, John H. Hartman, Sridivya Babu & Sharath K. Udupa,
SLINKY: Static Linking Reloaded, 2005 USENIX ANNUAL TECHNICAL CONFERENCE 1
(2005), http://www.cs.utah.edu/classes/csl-sem/old/f05/papers/slinky-usenix05.pdf.

100. Id.
101. BRYANT & O’HALLARON, supra note 19, at 566. When a library is updated, pro-

grams statically linked to an earlier version of that library will need to be re-linked to use
the updated version of the library.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 19 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 367

ory space when executed, and more network bandwidth when transmit-
ted.102 For example, almost every C language program uses standard I/
O functions such as printf and scanf.103 At run-time, the code for these
functions will be copied into the .text sections of all of these running
processes.104 On a typical system there can be as many as 50 to a 100
processes running at any given time.105 This replication is a significant
waste of system memory.106 Dynamic linking addresses these problems
by deferring much of the linking process until an executable is actually
loaded, and sometime even later than that.107

Dynamic linking is based on the concept of shared libraries. A
shared library is an object module that can be loaded at any memory
address and then linked with other applications that reference symbols
in the library. On UNIX systems, shared libraries are usually referred to
as shared objects and have the file type “.so.”108 On Windows systems,
this same concept is implemented through dynamically linked libraries
(“DLLs”).109 Shared objects save memory in two ways.110 First, only one
copy of a shared object is stored in the file system.111 Second, only one
copy of the .text section of a shared library is copied into main memory
for execution.112 Hence, the use of shared objects saves both disk and
main memory space.113

Dynamically linked object files are similar to statically linked object
files and contain much of the same information, such as code, symbolic
names, and relocation information. The following diagram shows the
structure of an ELF shared library:114

102. Collberg, Hartman, Babu & Udupa, supra note 99, at 1.
103. BRYANT & O’HALLARON, supra note 19, at 566.
104. Id.
105. Id.
106. Id.
107. LEVINE, supra note 33, at 205.
108. BRYANT & O’HALLARON, supra note 19, at 566.
109. Id.
110. Id. at 567.
111. Id.
112. Id.
113. Id.
114. LEVINE, supra note 33, at 209.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 20 28-SEP-10 10:21

368 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

ELF header
.hash
.dynsym
.dynstr
.plt
.text
.rodata
.data
.got
.dynamic
.bss

Read-only

Read/write

An ELF dynamically linked program looks much like an ELF shared
library. The main difference is that a dynamically linked program has
an INTERP section near the beginning of the file so the name of the dy-
namic linker to be used to load the file can be specified.115 Additionally,
a dynamically linked program does not have a “.got” section, because pro-
gram files are not relocated at run-time.116

The process for creating a dynamically linked program is similar to
that for creating a statically linked program. In fact, the same tools are
used for static and dynamic linking, but these tools are invoked with dif-
ferent command line parameters. For dynamic linking, the compiler
driver is given command line parameters directing the compiler driver to
create a shared object file. For static linking, the compiler driver is di-
rected to create object files suitable for inclusion in a static library. Im-
portantly, as part of the procedure for creating a shared object, the
compiler driver is directed to generate position independent code.117 Po-
sition independent code is code that can be executed at any arbitrary
memory location without having to be modified by a linker.118 Position
independent code is created using addressing modes that do not rely on
absolute addresses.119 For example, calls to procedures within the same
module can be made using PC-relative addressing.120 When calling pro-
cedures within the same module, the offset from the location of the call to
the location of the called procedure will be known (since it is in the same
module). Together with the program counter, all of the information
needed to call a procedure within the same module will always be known

115. Id.
116. Id.
117. BRYANT & O’HALLARON, supra note 19, at 567.
118. Id. at 570.
119. Id. at 570-71. An absolute address is a direct numeric reference to a location in

memory.
120. This form of addressing generates the address of a called procedure as an offset

from the current value in the processor’s program counter.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 21 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 369

at code generation time. If absolute addresses were used, then these ad-
dresses would have to be fixed up by a linker once the location where the
program was going to run was known.

The PC-relative addressing technique described above and other
similar techniques can handle all references to local symbols. However,
problems arise for calls to external symbols because these references are
normally not position independent.121 These problems can be solved us-
ing certain “bookkeeping” techniques and implicit information derived
from the way in which object files are organized. Since the data segment
of an object file is always loaded into memory immediately after the code
segment, the distance between any location in the code segment and any
location in the data segment is a run-time constant – meaning this dis-
tance will be independent of the location where an object file is loaded in
memory.122 A compiler takes advantage of this implicit knowledge by
placing two special data structures in the object file.123 These data
structures are used by the compiler to create position independent code
for calling external procedures and referencing external global
variables.124

The first of these data structures is called the global offset table or
GOT.125 The GOT contains one entry for each global data object refer-
enced by an object module.126 The compiler also generates a relocation
record for each of these entries.127 At load-time, the dynamic linker will
process these relocation records and store the absolute address of each
symbol in the corresponding entry for that symbol in the GOT.128 Once
this has been done, global variables can be accessed indirectly through
position independent code that uses the GOT.129 This technique works
because the location and size of the GOT are known at compile time.
Therefore, position independent code can be written that references the
GOT entry for a particular symbol. This type of indirect addressing
works because the absolute address for a symbol can be determined and
stored in the GOT entry for that symbol before execution occurs. At load-
time the absolute addresses for these positions will be known and can be
written into the GOT so that at run-time the proper absolute address can
be used by the position independent executable code in the .text

121. BRYANT & O’HALLARON, supra note 19, at 571.
122. Id. at 572.
123. Id.
124. Id.
125. Id.
126. Id.
127. BRYANT & O’HALLARON, supra note 19, at 572.
128. Id.
129. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 22 28-SEP-10 10:21

370 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

section.130

A similar, though somewhat more complex technique, is used when
calling external procedures. An additional data structure called the pro-
cedure linkage table or PLT is used in the binding process for external
procedure calls.131 Unlike the GOT, the PLT is contained in the .text
segment and the PLT is itself position independent code.132 Since the
location of the PLT within the .text section is known at compile time,
each reference to an external procedure can be made using position inde-
pendent code that refers to that procedure’s entry in the PLT. Unlike the
GOT where all of the entries are bound at load-time, the dynamic linker
defers binding of procedure addresses until the first time each procedure
is called. This is called lazy binding.133 The first time a program calls a
procedure, the PLT entry for that routine causes the invocation of the
dynamic linker.134 The dynamic linker will resolve the address of the
procedure that caused the jump to the linker and will store that address
in the GOT entry for that procedure.135 While the first invocation of
each procedure is quite slow due to the call to the dynamic linker and the
resulting address resolution, subsequent calls to each resolved procedure
will be much quicker and involve only a single extra jump to the PLT.136

The way in which the dynamic linker is invoked and the way in
which the absolute address of a particular procedure is resolved is quite
complicated. Before explaining how this is done, a further description of
the GOT is required. The first three entries of the GOT contain special
information.137 The first entry in the GOT contains the address of the
.dynamic segment, which contains information the dynamic linker uses
to bind procedure addresses.138 The second entry in the GOT contains
information identifying the module being dynamically linked.139 The
third entry in the GOT contains an entry point into the lazy binding code
of the dynamic linker.140 As described above, each external procedure
called by a module will have an entry in the GOT. Each of these proce-
dures will also have an entry in the PLT.141 The entries in the PLT are
initialized with a special sequence of instructions that will cause the pro-
cedure associated with that PLT entry to be dynamically resolved. The

130. Id.
131. Id. at 573.
132. LEVINE, supra note 33, at 213.
133. BRYANT & O’HALLARON, supra note 19, at 573.
134. Id. at 573-74.
135. Id. at 574.
136. Id.
137. Id. at 573.
138. Id.
139. BRYANT & O’HALLARON, supra note 19, at 573.
140. Id.
141. LEVINE, supra note 33, at 213.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 23 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 371

code in the .text segment that calls an external procedure will point to
the first instruction in the PLT entry for that external procedure.142

The addresses for external procedures in a program are only re-
solved at run-time. The first call to an external procedure will cause a
jump to the location of that procedure’s entry in the PLT and the code at
that location will be executed. The first instruction in each unresolved
PLT entry is a jump to the address contained in the corresponding entry
for that procedure in the GOT.143 In effect, this first jump does nothing
because the GOT entry is initialized to point to the next instruction in
the PLT entry.144 This next instruction is a “push” instruction that
pushes (or stores) a value on the run-time stack.145 The value stored on
the run-time stack is an offset value that indirectly identifies the symbol
to be resolved and the GOT entry into which the resolved address should
be loaded.146 Once this instruction is executed, the next instruction
jumps to PLT[0].147 The instructions at PLT[0] push another code on the
stack.148 This code identifies the program calling the dynamic linker
that, in this case, is the program asking for dynamic address resolution.
The program then jumps into the dynamic linker with the two identify-
ing codes that just have been loaded at the top of the stack.149 The re-
turn address of the procedure that made the call is also pushed onto the
stack.150

The first action performed by the dynamic linker is to save all the
registers being used by the calling program.151 The two identifying
words stored on the stack are used to locate the procedure whose address
is being resolved.152 Once the dynamic linker has obtained that address,
it stores the address in the entry for that procedure in the GOT of the
calling program.153 After has been done, the dynamic linker restores all
of the saved registers and pops the two words of identifying information

142. Id.
143. Id. at 213-14. This is true for each entry in the PLT except for PLT[0], PLT[1], and

PLT[2], which are initialized with special instructions that call the dynamic linker and
identify the program requesting symbol resolution. Id. at 214.

144. LEVINE, supra note 33, at 214.
145. Id. at 213-14. The “stack” is a special temporary memory location used for the

execution of a program.
146. LEVINE, supra note 33, at 214.
147. Id.
148. Id.
149. Id.
150. Id.
151. Id. The registers are saved so the current state of the calling routine can be re-

stored once the dynamic linker has performed its functions. If the registers are not saved,
the calling program will not be able to operate properly once the dynamic linker returns
control.

152. LEVINE, supra note 33, at 214.
153. Id. at 214-15.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 24 28-SEP-10 10:21

372 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

off the top of the stack.154 The dynamic linker then jumps to the address
of the routine that was just resolved and continues execution. The next
time this procedure is called, the GOT entry will contain the actual ad-
dress of the procedure. Instead of jumping back to the PLT and calling
the dynamic linker again, the GOT entry will be used to jump to the
called routine.155 Using the techniques just described, it is possible to
generate position independent code that can run at arbitrary locations
within memory. The use of position independent code allows the crea-
tion of shared libraries that, in turn, allows dynamic linking of
programs.

The final step in the dynamic linking process involves the actual
loading of a dynamically linkable program into memory. When an oper-
ating system runs a dynamically linkable program it first maps the pro-
gram’s pages into memory.156 The operating system will detect that the
program has an INTERPRETER section.157 This section indicates to the
operating system that it needs to invoke an interpreter program and also
identifies the interpreter to be used.158 Typically, this interpreter will be
ld.so, which, as indicated by the file extension, is also a shared object.159

When ld.so is invoked, certain information is passed to it, such as the
entry point for the program being loaded. The first thing ld.so does when
it is invoked is to use certain bootstrap code to relocate its own code and
data references.160 Once this is done ld.so can load the program to be
executed and all the libraries needed by that program. The dynamic
linker starts this process by initializing a chain of symbol tables with a
pointer to the symbol table of the program being linked and a pointer to
the symbol table of the linker itself.161 The linker then identifies all of
the libraries needed by the program being loaded. A pointer in the
linked program header allows the linker to locate this information.162

Information about any linked libraries is contained in two structures.
One is a list of DT_NEEDED entries; each of these entries contains an
offset in the DT_STRTAB data structure, which points to the start of the
name of the required library.163 The DT_STRTAB table contains charac-

154. Id. at 215.
155. Id.
156. Id. at 210.
157. Id. at 210.
158. LEVINE, supra note 33, at 210.
159. Id.
160. Id.
161. Id.
162. Id.
163. Id. at 210. The DT_STRTAB structure contains actual character string names and

is similar to the STRTAB structure used in a statically linked file. Unlike the STRTAB
structure, which contains symbol names, the DT_STRTAB structure contains linked li-
brary names.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 25 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 373

ter strings that correspond to the names of required libraries.
Once the dynamic linker has identified the name of a library, it

searches for that library in the file system. This process is more compli-
cated than it seems; fortunately, a detailed understanding of how this
search is performed is not required for a derivative works analysis. After
locating a library in the file system, the dynamic linker opens the file for
that library and loads the appropriate parts into memory.164 At a high
level, the loading of a library consists of allocating memory space for the
library’s text and data segments and then copying those segments into
memory.165 The linker will also allocate space for the .bss section and
initialize it to all zeros.166 The library’s symbol table will be also added
to the chain of symbol tables the linker is building for the program being
loaded. The linker also will examine the dynamic segment for the newly
loaded library to determine if that library depends on any other librar-
ies.167 Therefore, the loading of one library can cause a cascade effect
whereby a number of other libraries must also be loaded. This process
will continue until all of the libraries required by the program being
loaded, whether directly or indirectly, have been loaded. Once this is
done, the linker will have a complete symbol table.168 As a practical
matter, this complete symbol table will be in the form of a linked list
consisting of the ld.so symbol table, the program’s symbol table, and the
symbol tables of all the libraries required by that program.

After assembling the global symbol table, the linker checks the pro-
gram and each library and processes the relocation entries, populating
all GOT entries and performing any needed relocations in the various
data segments.169 Once the data relocations have been completed, the

164. LEVINE, supra note 33, at 212. If a library has already been loaded into memory,
there is no need to read it in from the file system and allocate new memory for it. Instead,
the version of the library already been loaded into memory is used.

165. LEVINE, supra note 33, at 212.
166. Id. As described earlier, the .bss section does not occupy any space in an object file.

It is simply a place holder. However, once a program or library is loaded, memory needs to
be allocated for this section. By definition, all .bss locations are initialized to zero. There-
fore, part of the process for loading the .bss section is the overwriting of the current con-
tents of the allocated memory with zeros. This also explains why the .bss section is not
allocated any space in an object file. Since the .bss is always initialized to zeros, there is no
need to store this information in the object file because it can be easily re-created at load-
time. Since the size of the .bss section is recorded in the object file, the .bss section can
always be fully re-created by simply allocating the appropriate amount of memory and zer-
oing it out. This differs from the .text section and other data sections since they have varia-
ble content that must be copied into memory.

167. LEVINE, supra note 33, at 212.
168. Id.
169. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 26 28-SEP-10 10:21

374 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

linker will run the program and library initialization code.170 At this
point no address resolution has been done for any procedure calls. In-
stead, the lazy binding approach is taken using the GOT and PLT as
described earlier. The reason for taking this approach is that programs
and libraries tend to contain large numbers of functions. During any
particular invocation of a program, many of these functions will never be
called; hence, the effort to resolve these unused procedures would be
wasted.171

Having concluded the technical description of dynamic linking, it is
now possible to identify the characteristics of a dynamically linked file
that will be important in a derivative works analysis. As will be dis-
cussed later, and unlike static linking, determining whether a dynami-
cally linked program is a derivative work of the libraries it calls is not
straightforward. While there are a number of similar steps and file
types in static and dynamic linking, there are key differences that affect
the legal analysis.

As with the static linking analysis, the derivative works analysis for
dynamic linking will assume that a non-GPL licensed program is linking
to a GPL-licensed library. The source code files for both dynamically and
statically linked programs will generally have include statements in the
form “#include <filename>“ so that the various external symbols used by
those programs can be located in the appropriate libraries. As with stati-
cally linked programs, the source code of a dynamically linked program
will also typically contain symbolic references to various procedures,
functions, data structures and other objects exported or made externally
available by the libraries being used by the program.

Dynamic linking also requires the creation of an intermediate ASCII
file generated using the C pre-processor. The running of the C pre-
processor will cause the contents of files referenced in include state-
ments (including any files that are in turn referenced in include state-
ments in any of those files) to be copied into the intermediate ASCII file.
As with static linking, this file will be essentially the same as the source
code file, except it will include any files that have been referenced di-
rectly or indirectly by include statements in the original source code file.

The next step in the process is the compilation phase. Once again,
an ASCII assembly language file is created. Indirectly, the code in this
assembly language file may embody the various data structures and defi-
nitions used by the calling program and defined in any referenced librar-
ies. This file will also contain the various symbols utilized within the

170. Id. This is the code located in the .init section, which was discussed in connection
with the description of the ELF dynamic object code file structure.

171. LEVINE, supra note 33, at 213.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 27 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 375

calling program. These symbols will be stored in the dynamic symbol
table.

During the next phase of the compilation and dynamic linking pro-
cess, the compiler driver invokes the assembler. The assembler trans-
lates the ASCII assembly language file into a program object file. As in
the case of static linking, the assembler will also include data in the relo-
catable object file that indicates those locations where the object code
needs to be modified to reflect the final location of a particular symbol.
However, the format of this information is different from that in static
linking. Unlike dynamic linking, static linking does not use either a
GOT or a PLT. Similar to static linking, this file will contain the names
of symbols referenced from called libraries. This file will also contain
information in the dynamic section that describes the various libraries
on which the program depends. As with statically linked machine code,
the machine code in this file may embody non-literal elements of the
called libraries.

The final phase involves the invocation of the linker. In dynamic
linking, an executable image is created in memory rather than in an ob-
ject file. When dynamic linking is done, the program created at develop-
ment-time is incomplete in the sense that there is still a significant
amount of linkage to be done at load-time or sometimes even at run-time
to allow the program to run correctly. This contrasts with static linking
where the object file created at development-time is complete and can be
executed without any further linkage. A dynamically linked object code
program will have a dynamic symbol table containing the various sym-
bols called from any GPL-licensed libraries it uses. The machine code in
this program may also embody non-literal elements from any GPL-li-
censed libraries. A dynamically linked program will, however, only con-
tain relocation information for itself. Any relocation information for any
shared libraries on which the program depends will be contained in those
libraries. Similarly, the GOT and PLT do not contain any information
from the shared objects on which the program depends. Finally, and
most importantly, a dynamically linked executable object file will not
contain any code from any shared objects to which it is linking. This code
remains with the applicable shared objects and only one common copy is
shared among all of the dynamically linked programs referencing those
shared objects. This is the sine qua non for dynamic linking.

For completeness, the executable image created by a dynamic linker
also should be considered. The executable image is an amalgam of code,
data and register settings in computer memory. It is important to re-
member that the executable image does not correspond to the object file
distributed by a computer software vendor. The object file distributed by
a computer software vendor is an ELF file as described earlier in this
section. The image of a running program in memory is significantly dif-

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 28 28-SEP-10 10:21

376 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

ferent. That image consists of the program itself as well as all of the
shared objects it depends on that may or may not have been provided by
the developer of the program.172 Therefore, an executing program is re-
ally a patchwork of code and data segments in a running computer.
When a program is loaded, many of the shared objects it depends on may
already be in memory. When this happens, the dynamic linker simply
performs the operations needed to allocate the various private data seg-
ments, link the required symbol tables, and perform the necessary relo-
cations. If a program being loaded requires a shared object that is not
already loaded in memory, then that shared object will be loaded. It is
not correct to say that the shared object will be copied into the program
being loaded, since, once loaded, the shared object will have its own
memory location and will be available for use by any other programs on
that computer. In reality, a shared object is loaded on its own, and the
program that caused it to be loaded is modified to reference that newly
loaded shared object. The linking program and the shared object to
which it is linking always occupy separate memory locations but within
the same memory space.

As evidenced by the foregoing description, the object code of a linked
library is not copied into a dynamically linking program – even when
that dynamically linking program is running on a computer. However,
the dynamically linking program may contain various symbol names de-
fined in the libraries to which it links. Accordingly, in determining
whether a dynamically linking program is a derivative work of the li-
braries to which it links, it is important to understand how copyright law
protects methods of operation (the mechanisms that allow a shared ob-
ject to be used by another program), data structures (for non-literal ele-
ments that may be embodied in a calling program), and symbolic names
(such as those used for procedure calls and variable and field names).

D. INTER-PROCESS COMMUNICATION

The final type of program-to-program interaction to be examined is
network or inter-process communication. Typically, networked pro-
grams use client-server architectures.173 A client-server system de-
scribes a relationship between two types of computer programs in which
one program, the client, is designed to submit service requests to another
program, the server.174 The server, in turn, is designed to receive and

172. One can also argue that the image includes the operating system since significant
operating system functionality is required to run a dynamically linked program.

173. BRYANT & O’HALLARON, supra note 19, at 802. Other architectures are possible –
such as, for example, peer-to-peer architectures.

174. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 29 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 377

fulfill service requests.175 The format and mechanics for the exchange of
service requests and replies between a client and a server are specified in
a protocol.176 There are many well-known examples of client-server ar-
chitectures and corresponding protocols that will be familiar to everyday
computer users. For example, web browsers and web servers interact
using the Hypertext Transfer Protocol, commonly known as HTTP.177

Computer users can exchange files using the File Transfer Protocol
(“FTP”). Numerous other protocols exist for capabilities such as remote
procedure call (“RPC”), domain name resolution (“DNS”), and various
features of electronic mail (SMTP and MIME, for example).178 The most
significant protocols for program-to-program communication are based
on an underlying communication protocol suite called Transmission Con-
trol Protocol/Internet Protocol or TCP/IP. These are the underlying com-
munications protocols for the global Internet.179 The definition of a
protocol is usually set forth in a document called a request for comments
or RFC. RFCs began in 1969 as part of the original ARPANET pro-
ject.180 Since that time, RFCs have become the official channel for stan-
dards and other publications of the Internet Engineering Task Force
(“IETF”).181 The IETF is a large international community of network
designers, operators, vendors and researchers who are involved in the
operation and evolution of the Internet.182 Technical work within the
IETF is done through working groups.183 For example, there are work-
ing groups focused on issues such as routing, transport and security.184

Many major computer operating systems, including all UNIX vari-
ants, Macintosh and Windows, make network communications capabili-
ties available to applications using an API called sockets.185 Researchers
at the University of California, Berkley originally developed the sockets

175. Id.
176. W. RICHARD STEVENS, BILL FENNER & ANDREW M. RUDOFF, UNIX NETWORK PRO-

GRAMMING: THE SOCKETS NETWORKING API 3 (2004).
177. BRYANT & O’HALLARON, supra note 19, at 826.
178. See RFC Editor, Official Internet Protocol Standards, http://rfc-editor.org/

rfcxx00.html (last visited May 4, 2010) (providing a comprehensive list of RFCs).
179. BRYANT & O’HALLARON, supra note 19, at 807-08.
180. Wikipedia, Requests for Comments: History, http://en.wikipedia.org/wiki/Re-

quests_for_comments#History (last visited Apr. 26, 2009).
181. Id.
182. IETF, Overview of the IETF, http://www.ietf.org/overview.html (last visited Apr.

26, 2009).
183. Id.
184. IETF, Active IETF Working Groups, http://datatracker.ietf.org/wg/ (last visited

Apr. 26, 2009).
185. BRYANT & O’HALLARON, supra note 19, at 816; STEVENS, FENNER & RUDOFF, supra

note 176, at 20; Brian “Beej” Hall, Using Internet Sockets, BEEJ’S GUIDE TO NETWORK PRO-

GRAMMING 5 (Sept. 8 2009), http://beej.us/guide/bgnet/output/print/bgnet_USLetter_2.pdf.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 30 28-SEP-10 10:21

378 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

API in the early 1980s.186 While the sockets API was designed to work
with any underlying protocol, it was first implemented using TCP/IP.187

Today, TCP/IP remains the most significant transport and network layer
protocol combination.

Before examining how the sockets API is used in a client-server sys-
tem, some basic concepts about network communication need to be ex-
plained. A network consists of hardware and software components that
work together to allow communications between physically separate
computers.188 There are many different kinds of computer networks and
these different types of networks have varying geographic coverage. For
example, Local Area Networks, or LANs, can be used for communica-
tions within a room, building or campus.189 For communications on a
city-sized scale, a Metropolitan Area Network, or MAN, would be more
appropriate.190 Finally, for country, continent or planet-wide communi-
cation, Wide Area Networks, or WANs, are used.191 The way in which
computers are connected can be varied to suit size and throughput re-
quirements. Typical media used for network connectivity are copper
wire, fiber optics, wireless, microwave, and satellite communication.192

Despite the large number of different types of computer networks and
the varying geographic scales and implementations, the semantics for
setting up sockets-based communication between two programs is rela-
tively straightforward and well shielded from the details of the underly-
ing physical network.

The first major task for a designer of a message-based application is
to identify a particular instance of a specific program in a network to
which a message is to be sent. In a TCP/IP-based network this is done
using an IP address. An IP address is an unsigned-32 bit integer used to
identify a host or computer.193 Sometimes an IP address is displayed for
human viewing in dotted decimal notation, where each byte is repre-
sented by its decimal value and separated from the other bytes by peri-

186. BRYANT & O’HALLARON, supra note 19, at 816.
187. See BRYANT & O’HALLARON, supra note 19, at 816; See also, STEVENS, FENNER &

RUDOFF, supra note 176, at 20.
188. See BRYANT & O’HALLARON, supra note 19, at 803.
189. ANDREW S. TANENBAUM, COMPUTER NETWORKS 16-17 (4th ed. 2003). A typical ex-

ample of a LAN is the IEEE 802.3 or Ethernet.
190. TANENBAUM, supra note 189, at 18. The best-known example of a MAN is the cable

television network found in most cities.
191. TANENBAUM, supra note 189, at 19-21. Wide area networks tend to be much more

heterogeneous, with various switching elements and transmission lines connected in irreg-
ular topologies. The Internet and the Public Switched Telephone Network are examples of
well-known WANs.

192. See generally, TANENBAUM, supra note 189, at ch. 2.
193. See BRYANT & O’HALLARON, supra note 19, at 808-09.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 31 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 379

ods.194 More commonly, however, IP addresses are publicly presented to
humans as domain names. Domain names are sequences of characters
intended to provide a friendly and more easily remembered way of denot-
ing a particular IP address.195 Examples of well-known domain names
are google.com, amazon.com and yahoo.com. A distributed worldwide
database known as the Domain Naming System is maintained to store
mappings between dotted decimal representations of IP addresses and
domain name representations of IP addresses.196 The Internet Corpora-
tion for Assigned Names and Numbers (“ICANN”) is currently responsi-
ble for managing the Domain Naming System.197 ICANN is a non-profit
organization that assumed the DNS management functions under a con-
tract from the United States Department of Commerce.198 Previously,
part of the United States government performed these management
functions.199

Domain names are formatted in a hierarchy consisting of first-level,
second-level and third-level domain names.200 First-level domain names
are a defined set of names that provide a very high-level indication about
the owner of a particular domain name. Typical first-level domain
names are .gov (a government entity), .edu (an educational institution),
and .com (a commercial entity).201 Second level domain names, such as
“amazon” and “google” are, subject to certain restrictions, assigned on a
first-come, first-served basis by entities known as domain registrars.202

Domain registrars are appointed and operate under the auspices of
ICANN or a national top-level domain authority or both.203 Using infor-
mation maintained in the Domain Naming System, the IP address of a
particular host computer can be obtained by using its domain name, or
conversely, the domain name of a particular host computer can be ob-
tained by using its dotted decimal IP address.204 These capabilities are
important because an Internet communication connection consists of a
pair of endpoints specified by their IP addresses and a communication

194. Id. at 809. For example, the IP address 192.0.34.163 is used by the Internet Corpo-
ration for Assigned Names and Numbers (ICANN) at http://www.icann.org.

195. BRYANT & O’HALLARON, supra note 19, at 811.
196. Id. at 812.
197. Internet Corporation for Assigned Names and Numbers, ICAAN About, http://

www.icann.org/tr/english.html (last visited Apr. 26, 2009).
198. Wikipedia, ICANN, http://en.wikipedia.org/wiki/Icann (last visited Apr. 26, 2009).
199. Caslon Analytics, ICANN and the UDRP, http://www.caslon.com.au/icannp-

rofile1.htm (last visited July 19, 2010).
200. BRYANT & O’HALLARON, supra note 19, at 811.
201. Id.
202. Id. at 812.
203. Wikipedia, Domain Name Registrar, http://en.wikipedia.org/wiki/Domain_name_

registrar (last visited Apr. 26, 2009).
204. BRYANT & O’HALLARON, supra note 19, at 812.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 32 28-SEP-10 10:21

380 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

stream passing between the endpoints using a chosen protocol.205

The basic data structure used for communication in the sockets sys-
tem is a socket. A socket is an endpoint of an Internet connection. A
socket address consists of an IP address, as described above, and an addi-
tional sixteen-bit addressing unit called a port.206 Port numbers are
used because at any given time on a particular host computer there may
be multiple processes using a particular transport protocol. A port is
used to differentiate between these processes.207 Servers for well-known
client-server protocols, such as FTP and HTTP, are assigned well-known
and fixed port numbers.208 Clients, on the other hand, are usually as-
signed short-lived and varying port numbers, known as ephemeral
ports.209

Internet clients and servers communicate by sending and receiving
streams of data between connections. A connection is uniquely identified
by the socket addresses of its two end points.210 The IP address portion
of each socket will identify the host computer on which the communicat-
ing process is a resident.211 The port number will identify the particular
process on a host computer to which a communication stream is to be
directed.212

A connection is created between two processes using a number of
function calls available in the sockets API.213 The first step in creating a
connection is to create a socket at each end of the connection.214 Internet
socket addresses are stored in 16-byte structures of the type
sock_addr_in.215 The following is the definition of the sockaddr_in data
structure:

struct sockaddr_in{
unsigned short sin_family; /* address family (always AF_INET) */
unsigned short sin_port; /* port number */
struct in_addr sin_addr; /* IP address */
unsigned char sin_zero[8] /* pad to sizeof (struct sockaddr) */

};216

205. Id. at 815.
206. Id.
207. See STEVENS, FENNER & RUDOFF, supra note 176, at 20.
208. Id. For example, the FTP service is assigned the well-known port number 21 (deci-

mal), while the HTTP service is assigned the well-known port number 80 (decimal). Id.
209. Id. The value of a port assigned to a client is normally not significant. Id. The

important point is that the port number is unique so it can identify a particular client to
whom a communication stream is to be directed. Id.

210. BRYANT & O’HALLARON, supra note 19, at 815.
211. Id.
212. Id.
213. Id. at 817-23.
214. Id. at 818.
215. Id. at 817.
216. BRYANT & O’HALLARON, supra note 19, at 817.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 33 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 381

The key components of this data structure are the IP address
(sin_addr) and the port number (sin_port).217 A socket is created by call-
ing the socket function that will return a socket descriptor that can be
then used by a communicating process. Below is the definition of the
socket function and an example of how it would be typically invoked in
the source code of a client program:

int socket (int domain, int type, int protocol);
clientfd = socket (AF_INET, SOCK_STREAM, 0);218

The definition (the first line above) indicates to a programmer that
the socket function takes three parameters. The first parameter specifies
the addressing format or domain to be used.219 The second parameter
specifies the type of socket to be created. The two most common choices
are stream sockets and datagram sockets.220 The final parameter speci-
fies the communication protocol the socket will use.221 The invocation of
the socket function (the second line above) is a command to the operating
system to create a TCP-based socket and to store the file descriptor for
that socket in the variable clientfd.222

The first parameter tells the operating system that the requested
socket is to be in the Internet domain.223 The second parameter tells the
operating system that the requested socket is to be an endpoint for an
Internet connection.224 The third parameter is a default value that tells
the operating system to select the protocol that is most appropriate given
the values of the first two parameters.225 In this case, for a stream
socket in the Internet domain, the most appropriate protocol is TCP. For
future activities using this socket, the programmer will use the value
stored in the variable clientfd. The number stored in clientfd is a short-

217. Id.
218. Id. at 818.
219. Samuel J. Leffler, et. al., An Advanced 4.4 BSD Interprocess Communication Tuto-

rial 4, http://www.cs.iupui.edu/~cchang/536.01/advanced-ipc.pdf. Two commonly used ad-
dressing schemes are AF_INET and AF_UNIX. Id. AF_INET is the addressing scheme for
the Internet domain (IP addresses and ports) and AF_UNIX is the addressing scheme for
the UNIX domain (path names and families). Id.

220. See Hall, supra note 185, at 5. A stream socket is a socket that is capable of two-
way reliable communication. Id. In this context, reliable means the data transmitted over
this type of socket will arrive in the order it was sent and will not be duplicated. Id. Relia-
ble also means that if a portion of the data is not received, the sender will be informed of
this failure and that portion of the data will be re-transmitted until it is successfully re-
ceived. Id. A datagram socket (sometimes referred to as a connectionless socket) also sup-
ports a bi-directional data flow. Id. However, for communication done using a datagram
socket, the data flow is not guaranteed to be sequenced, reliable or unduplicated. Id.

221. BRYANT & O’HALLARON, supra note 19, at 818.
222. Leffler, et. al., supra note 219, at 4.
223. BRYANT & O’HALLARON, supra note 19, at 818.
224. Id.
225. See Hall, supra note 185, at 13.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 34 28-SEP-10 10:21

382 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

hand reference that tells the operating system which socket is to be used
for the activity being requested.

Once a client socket has been created, the next operation is to con-
nect that client to a server to allow communications with that server.
This is done using the connect function, which is defined below:

int connect (int sockfd, struct sockaddr *serv_addr, int addrlen);226

The connect function will cause the operating system to attempt to
establish an Internet connection with the server whose socket address is
stored in the parameter serv_addr.227 If a successful connection is made
to the server, then reading and writing (i.e. receiving and sending) can be
done using the sockfd descriptor.228 The Internet address to which a
connection is to be made may be hard-coded into the parameter passed to
the connect function, or it can be determined on the fly by using a func-
tion such as getaddrinfo.229 Once a connection has been established,
messages can be exchanged using the send and recv functions. The defi-
nitions for these functions are set forth below:

int send (int sockfd, const void *buff, size_t nbytes, int flags);
int recv (int sockfd, void *buff, size_t nbytes, int flags);230

For the recv function, sockfd is the socket descriptor of the socket
from which data is to be read; buff is a buffer or storage area where the
received data is to be written; and size_t is the maximum number of
bytes to be read.231 The final parameter is usually set to 0.232 The recv
function returns the number of bytes actually read into the buffer or -1 if
an error has occurred.233 For the send function, sockfd is the socket
descriptor of the socket to which data is to be sent; buff is a pointer to the
data that is to be transmitted; and size_t is the length of the data to be
transmitted measured in bytes.234 Once again, the flags parameter is
typically set to 0.235 Send returns the number of bytes sent or -1 in the
case of an error.236 The send and recv functions may send or receive
fewer than the number of bytes specified in the size_t parameter.237

Usually when this happens, the send or recv function will need to be

226. BRYANT & O’HALLARON, supra note 19, at 818.
227. Id.
228. Id. at 819. From a UNIX programming perspective, a socket is treated in much the

same way as an open file. Id.
229. See Hall, supra note 185, at 16. The port number for the destination server must

also be determined. Id.
230. STEVENS, FENNER & RUDOFF, supra note 176, at 387.
231. Hall, supra note 185, at 24.
232. Id.
233. Id.
234. Id. at 23.
235. Id.
236. Id. at 24.
237. Hall, supra note 185, at 24.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 35 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 383

called again to either send or receive the remaining data.238

The semantics for setting up a connection on the server side of a
client-server pair are different.239 In the server case, the operations re-
quired to set up a connection are bind, listen, and accept. The following
are the definitions for these functions:

int bind (int sockfd, struct sockaddr *my_addr, int addrlen);
int listen (int sockfd, int backlog);
int accept (int listenfd, struct sockaddr *addr, int *addrlen);240

The bind function causes the operating system to associate the
socket address for a server (my_addr) with a socket descriptor sockfd.241

The third parameter gives the size of the sockaddr_in structure.242

Server sockets are passive in the sense that rather than initiating a con-
nection, a server socket passively waits to receive connection requests
from clients.243 By default, the operating system assumes that any calls
to the socket function are requests for an active or client socket.244 Ac-
cordingly, a server needs to inform the operating system that it wants to
create a passive socket – this is done using the listen command.245 The
listen command tells the operating system to convert an active socket
into a listening socket capable of accepting client connections.246 As with
other sockets-related functions, the sockfd parameter identifies the socket
to be acted upon.247 The backlog parameter identifies the number of con-
nection requests that can be queued before the operating system stops
accepting further connection requests for that socket.248 Once a socket
has been bound to a particular address and converted to a listening
socket, it is ready to wait for connection requests from clients.249 This is
done by calling the accept function.250 The accept function waits for cli-
ent connection requests for the listening socket specified by the listenfd
parameter.251 When a connection request arrives, the socket address in-
formation for the client is stored in the addr parameter and the function
returns a connected descriptor that can be used to communicate with the

238. Id.
239. This description assumes that a server socket has already been created using a call

to the socket function.
240. See BRYANT & O’HALLARON, supra note 19, at 819-821.
241. Id. at 820.
242. Id.
243. Id.
244. Id.
245. Id.
246. BRYANT & O’HALLARON, supra note 19, at 820.
247. Id.
248. Id. at 820-21.
249. Id. at 821.
250. Id.
251. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 36 28-SEP-10 10:21

384 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

client.252 The server can now communicate with the client by using the
connected descriptor and the send and recv functions.253

The sockets API allows a programmer to create a client-server pair
that can communicate using a transport protocol, such as TCP.254 The
data exchanged by a client and server will be in the form of a byte
stream; however, when that byte stream is used in connection with a
higher level protocol, it will contain information that has meaning within
the context of that higher-level protocol. The higher-level protocol may
be one defined in an RFC, such as HTTP, FTP or Simple Mail Transfer
Protocol (“SMTP”), or it may be a non-standards-based protocol that has
been defined for a specific client-server application.

As was the case with statically and dynamically linked programs,
the source code for communicating client and server programs will al-
most certainly contain include statements in the form “#include
<filename>”.255 These include statements allow client and server pro-
grams access to various data structures and procedure definitions for the
sockets API and other APIs that may be used by those programs. The
source code for the client and server programs will also contain actual
calls to the procedures made externally available by these APIs. In gen-
eral, use of the sockets API (or any other API or interface defined in other
well-known standards such as FTP, HTTP or SMTP) will involve the use
of a non-GPL licensed set of definitions and functions. If someone devel-
ops a GPL-licensed implementation of the sockets API (or any other well-
known third-party defined interface) the sockets data structure defini-
tions and procedure calls used within that implementation will not be
original to that implementation.256 Since these materials cannot be orig-
inal to the author of any such GPL-licensed implementation, such an au-
thor cannot claim copyright to them.257

252. BRYANT & O’HALLARON, supra note 19, at 821-22. Each time a connection is cre-
ated between a server and client, the accept function will return a new connected
descriptor. A connected descriptor is used to communicate with a specific client and exists
only as long as it takes to service the client request. By contrast, a listening descriptor is
used only to set up connections with clients and once a connection has been established, the
listening descriptor is not used to exchange data with those clients. Typically, a listening
descriptor is created only once and exists for the lifetime of a particular instance of a
server.

253. Hall, supra note 185, at 22.
254. BRYANT & O’HALLARON, supra note 19, at 816.
255. On a UNIX system, the include file reference would be to the sys/socket.h file.
256. If such a GPL-licensed implementation does not copy the definitions and proce-

dures in the specification for the particular API, interface or protocol, it will not work prop-
erly. For software that implements a well-known standard, strict compliance with the
standard is required if the implementation is going to work properly with other software.

257. The underlying code can be original in the sense that it need not have been copied
from another implementation. The main constraint on the code is that it has to provide the

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 37 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 385

When socket calls or higher-level communication APIs are used
there is no need for any server source or object code to be incorporated
into a client. The client and server operate separately and can even op-
erate on different computers. Instead of sharing object code or exchang-
ing process control, a client and server interact by exchanging messages.
The key to this interaction is that the client and server must use the
same protocol. When a client communicates with a particular server, the
client will need to submit specific messages in a specific sequence. By
submitting the proper messages in the expected sequence a client can
receive services from a server. These messages and the required se-
quencing are usually defined in a header file, which can be referenced
within a program using an include statement. A definitions file can be
used to specify a protocol that is unique to a given server or the server
can use a definitions file for a well-known or third-party protocol. This
latter situation can arise if a programmer is creating a GPL-licensed im-
plementation of a well-known client-server architecture or a GPL-li-
censed component of a well-known protocol stack.258

In the first scenario described above, a client program calling a GPL-
licensed server will need to use a protocol that has been specifically de-
signed for that server. The use of the various data structures associated
with a unique protocol adopted by such a GPL-licensed server is likely to
be indirectly reflected in the object code of the client program. For exam-
ple, the use of data structures developed specifically for a particular
server may cause object code to be generated and memory to be allocated
within the client program based on memory mappings specified by those
data structures. Accordingly, such a client program may copy non-literal
elements of a server program with which it wishes to communicate.
Therefore, when determining whether a client program is a derivative
work of a server program with which it communicates, it will be impor-
tant to understand how copyright law protects data structures and
protocols.

In the second scenario described above, a client communicating with
a GPL-licensed server will use a protocol that is not specific to that
server and not originally created by the developer of that server. Since
the protocol and data structures in this scenario have been created by a

expected functionality for the applicable API, which can usually be done with indepen-
dently developed code.

258. An example of this type of situation would be the development of a GPL-licensed
IMAP server for use in an email system. (IMAP stands for Internet Message Access Proto-
col and this protocol is defined in RFC 2060 and RFC 3501). The IMAP protocol supports
message handling operations such as, “create”, “retrieve”, “delete”, etc. The IMAP protocol
also supports various mail folder management capabilities. The IMAP protocol allows an
email client to communicate with an IMAP server to remotely access messages stored on
that server.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 38 28-SEP-10 10:21

386 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

third party, they will not be original when copied and used in a GPL-
licensed server. As with the first scenario, the use of such a third-party
protocol and associated data structures probably will be indirectly re-
flected in the object code of the client program. However, in this case,
any non-literal copying will not be copy protected elements of the GPL-
licensed server. Instead, it will copy non-literal elements of third-party
work. Therefore, the copyright and licensing terms for that third-party
work will be critical when assessing the significance of this material as
embodied in the client program. In general, if the protocol being used is
a well-known protocol, such as Open Database Connectivity (“ODBC”) or
SMTP, then the license terms for that protocol are not going to be GPL-
based. Therefore, in this situation, the primary determinant when as-
sessing any GPL effects is not the scope of copyright protection for data
structures and protocols, but is instead their originality when used in the
context of a GPL-licensed server. One final issue that will be critical in
assessing the GPL effects in both scenarios is whether client-server in-
teractions are methods of operation.

III. AN EXAMINATION OF THE VIRAL PROVISIONS
OF THE GPL

The FSF claims that the GPL is a bare copyright license.259 By this,
the FSF means that the legal foundation for the GPL is copyright law
and not contract law. Accordingly, the enforceability of the GPL is not
based on offer, acceptance, consideration, or any of the other require-
ments for the creation of a contract.260 Instead, the enforcement of the

259. See Eben Moglen, Enforcing the GNU GPL, http://www.gnu.org/philosophy/enforc-
ing-gpl.html (last visited Apr. 26, 2009). See also, Letter from Eben Moglen, General Coun-
sel, Free Software Foundation, to Carol A. Kunze (Oct. 23, 2001), http://www.nccusl.org/
nccusl/meetings/UCITA_Materials/kunze-ucita.pdf. In this letter, Eblen Moglen, in his ca-
pacity as General Counsel for the FSF, wrote the following about the GPL when answering
a question about the applicability of UCITA to the GPL:

The legal effect of the GPL is therefore to apply only copyright doctrine, purely
unilaterally and permissively, to the distribution of software. The GPL, unlike a
contract, functions identically in all legal systems observing the fundamental prin-
ciples of copyright harmonized by the Berne Convention. Because our software
may be cooperatively produced by individuals in many different countries, and
then redistributed by users everywhere in the world, it is our intention to avoid
the formation of contractual relations that would impede the international uni-
formity of our arrangements.
For both theoretical and practical reasons, therefore, the FSF and all other devel-
opers choosing to use the GPL for release of software (a worldwide community of
tens of thousands of programmers involved in the creation of thousands of free
software programs) specifically do not intend the GPL to be a contractual relation-
ship predicted on mutual assent to obligations. Id.

260. This has been a much debated issue. The fact that the FSF has taken the position
that the GPL is a bare copyright license is not determinative. To date, most analyses have
treated the GPL as a contract. However, most of these analyses have not considered the

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 39 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 387

GPL is based solely on copyright law principles. This approach has not
yet been tested in any United States courts; however, if this rationale is
accepted, there are some potential side effects with respect to the pur-
portedly viral provisions of the GPL.261

The first side effect of a finding that the GPL is a bare copyright
license relates to remedies. It has been suggested that if the GPL is a
bare copyright license, then there is no basis upon which a GPL violation
can be used to force the licensing of proprietary software under the
GPL.262 The reason for this is that only copyright infringement reme-
dies are available for a failure to comply with the conditions for the grant
of a license under the GPL. Accordingly, under this theory the remedies
available for a GPL violation should include damages and injunctive re-
lief, but should not include contractual remedies, and particularly should

contract versus bare copyright license issue. See e.g., González, supra note 8, at 331, 333;
González, supra note 8, at 331, 333; Wacha, supra note 11, at 20, 22-23 (all containing
enforceability analyses based on contract principles). See also Jason B. Wacha, Taking the
Case: Is the GPL Enforceable?, 21 SANTA CLARA COMPUTER & HIGH TECH. L.J. 451, 456
(2005) (stating that:

The GPL is not just a method for a licensor to give up rights that he could other-
wise enforce in court; the GPL imposes obligations on the licensee as well, which
the licensee must accept. It is likely that a court, in the U.S. or abroad, would
recognize the GPL as a contract.) (footnote omitted).

Paul H. Arne & John C. Yates, Open Source Software Licenses: Perspectives of the End User
and the Software Developer, 22 THE COMPUTER & INTERNET LAWYER 1, 2-3 (Aug. 2005) (ac-
knowledging the license-only position, but observing:

Most open source licenses contain other provisions that are harder to characterize
as some exclusive right that the copyright holder is retaining rather than giving
away. Examples of these include limitations of liability and disclaimers of implied
warranties, specifically the warranties of merchantability and fitness for purpose
implied in some contracts under the Uniform Commercial Code. It is harder to
argue that a limitation of liability is a limitation on the ability to make copies,
create derivative works, or distribute the software. Accordingly, in order to be
enforceable, other laws must probably be relied on other than copyright in order to
render them enforceable. Contract law is the likely alternative.) (footnote
omitted).

See contra Raymond Nimmer, Is the GPL license a contract? The wrong question, CONTEM-

PORARY INTELLECTUAL PROPERTY, LICENSING & INFORMATION LAW, Sept. 6, 2005, http://
www.ipinfoblog.com/archives/licensing-law-issues-30-is-the-gpl-license-a-contract-the-
wrong-question.html (taking the position that a determination about whether the GPL is a
license or a contract depends on the context of the particular transaction). Pamela Jones,
The GPL Is a License, Not a Contract, Which is Why the Sky Isn’t Falling, GROKLAW, Dec.
14, 2003, http://www.groklaw.net/article.php?story=20031214210634851 (taking the posi-
tion that the GPL is a license and not a contract). Still other commentators believe that
even if the GPL is held to be a contact, it is unlikely a court will grant the remedy of specific
performance, see Richard A. Epstein, Why Open Source is Unsustainable, FINANCIAL TIMES,
Oct. 21, 2004, http://www.ft.com/cms/s/78d9812a-2386-11d9-aee5-00000e2511c8.html.

261. See Jacobsen v. Katzer, 535 F.3d 1373 (Fed. Cir. 2008) (dealing with the construc-
tion of certain conditions in the Artistic License, which may be relevant in construing con-
ditions in the GPL).

262. See Jones, supra note 260.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 40 28-SEP-10 10:21

388 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

not include specific performance to compel the licensing of derivative or
infringing works. If this analysis is correct, then the GPL is not viral
because a licensor cannot force derivative or infringing works to be li-
censed under the terms of the GPL and such licensing can only occur if
the accused infringer chooses to do so.263 In the worst case scenario, an
accused infringer would be subject to an injunction, damages, and an ob-
ligation to pay attorney’s fees. For a commercial software vendor, this
“worst case” would be bad, but not as bad as potentially losing its future
license revenue for the affected product. The affected product would
have to be taken out of commercial distribution for a period of time while
the infringing or derivative code was removed; however, once this code
was removed, the developer could continue to license the product. There
are companies for whom such costs and delays might be catastrophic, but
it seems reasonable to expect that the majority of commercial software
vendors would be able to survive such a scenario.

Unfortunately, the bare copyright analysis set forth above is not
complete since it does not take into account the potential effect of §103(a)
of the Copyright Act, which provides that:

The subject matter of copyright as specified by section 102 includes
compilations and derivative works, but protection for a work employing
preexisting material in which copyright subsists does not extend to any
part of the work in which such material has been used unlawfully.264

In the circumstances described above, a commercial software vendor
that fails to comply with §5(c) of the GPL.v3 (or §2(b) of the GPL.v2) will
be unlicensed and thus potentially infringe copyright in the GPL-li-
censed work. If the commercial software vendor has created a derivative
work of the GPL-licensed work then §103(a) should apply to that deriva-
tive work. Therefore, even if the copyright holder of a GPL-licensed work
cannot compel a commercial software vendor to license its product under
the GPL, the software vendor may not be able to use copyright to protect
those portions of a derivative work in which GPL-licensed material has

263. Id. The following argument has been made in support of this proposition:
So when you hear that the GPL is viral and can force proprietary code to become
GPL, which a couple of lawyers have been saying, you’ll know that isn’t true. If you
steal GPL code, you can expect enforcement, if the violation isn’t cured, but it can
only be enforcement of a license, not a contract, and a forced release under the
GPL can’t be imposed on you under copyright law. It’s not one of the choices, as
Professor Moglen has explained. You do have a choice under the GPL license: you
can stop using the stolen code and write your own, or you can decide you’d rather
release under the GPL. But the choice is yours. If you say, I choose neither, then
the court can impose an injunction to stop you from further distribution, but it
won’t order your code released under the GPL. This is because under copyright
law, as Professor Moglen explained, your penalty is the injunction, damages, and
maybe attorney’s fees. Your code remains yours, as you can see, even in a worst
case scenario. Id.

264. 17 U.S.C. § 103(a) (2010) (emphasis added).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 41 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 389

been used.265 It has even been suggested that applying §103(a) means
that no one has copyright in the affected portions of the derivative work
and those portions fall into the public domain and are theoretically free
for anyone to use, copy and/or distribute.266 Section 103(a) poses an
even greater risk in cases where the infringing material pervades a re-
sulting derivative work. In such cases copyright may not apply to any
part of such a derivative work.267 Therefore, while it may be correct to
say that the GPL does not have viral effects under a bare copyright li-
cense theory, this does not mean that use of GPL-licensed software in
violation of §5(c) of the GPL.v3 (or §2(b) of the GPL.v2) cannot have sig-
nificant intellectual property consequences. Accordingly, the real worst
case for a commercial software vendor under a bare copyright license
theory appears to be the possibility of injunctive relief, damages (poten-
tially including attorney’s fees), and loss of copyright protection for prod-
ucts that include infringing GPL-licensed material. This means a
commercial software vendor can potentially lose its ability to prevent un-
authorized copying, use or distribution of source or binary versions of its
affected products that have been provided to licensees. If the source code
for a product has fallen into the public domain through the operation of
§103(a), then a recipient of that source code could make it widely availa-
ble without the software vendor having any recourse under copyright
law.268 If only binary code versions of the affected products have been
distributed to customers, then these binary code versions can also be
made widely available (a somewhat less destructive scenario). While the
likelihood of either of these scenarios seems relatively low, both are po-
tentially far more destructive than the worst case scenario generally sug-
gested in the literature for a violation of the GPL under a bare copyright
license theory.

265. Sean Hogle, Unauthorized Derivative Source Code, 18 THE COMPUTER & INTERNET

LAWYER 1, 3 (May 2001).
266. Id. at 5.
267. See Eden Toys, Inc. v. Florelee Undergarment Co., Inc., 697 F.2d 27, 34 n.6 (2d Cir.

1982) (stating that copyright protection does not extend to derivative works if the pre-ex-
isting work tends to pervade the entire derivative work). See also Pickett v. Prince, 207
F.3d 402 (7th Cir. 2000) (denying copyright protection where a copyrighted symbol per-
vaded a derivative work). See also Anderson v. Stallone, No. 87-0592, 1989 WL 206431
(C.D. Cal. Apr. 25, 1989) (concluding that copyright protection for unauthorized works is
limited to compilations and cannot reasonably be applied to derivative works).

268. It seems unlikely a licensee would take such action since it would almost certainly
trigger a lawsuit whose outcome would not be a forgone conclusion. This scenario is proba-
bly even more remote since a commercial software developer may have other remedies
under trade secret law, patent law, or pursuant to contract law under the developer’s li-
cense agreement with its licensees. However, a commercial software developer’s most po-
tent legal weapon, copyright law, may have been compromised through the operation of
§103(a).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 42 28-SEP-10 10:21

390 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

The second side effect of a finding that the GPL is a bare copyright
license relates to the type of material governed by such a license. If copy-
right law is the sole basis upon which the GPL operates, then subject
matter not covered by copyright law, such as processes, procedures,
methods of operation, and other material excluded by doctrines such as
merger and scènes à faire, cannot be controlled using the GPL. This lim-
itation is particularly noteworthy since under ProCD, Inc. v. Zeidenberg,
contract law can be used to protect non-copyrightable portions of
software programs.269 Under copyright law, material in a GPL-licensed
work that is not copyright protected may be used in another work with-
out making that second work a derivative or infringing work of the GPL-
licensed work. If unprotected material is used from a GPL-licensed
work, then the operation of §5(c) of the GPL.v3 should be nullified. The
resulting work should not be an infringing or derivative work; and there-
fore, neither damages nor injunctive relief should be available. Addition-
ally, since no material has been used unlawfully, §103(a) should not
apply and copyright in the resulting work should not be compromised. A
similar outcome is also possible if the GPL is found to be a contract. In
this scenario, the §5(c) requirement (or in the case of the GPL.v2, the
§2(b) requirement) would need to be construed as only applying to deriv-
ative or infringing works. In the case of the GPL.v2, a variety of terms
are used to characterize the scope of the viral provisions. This makes
construction of the viral provisions of the GPL.v2 challenging. However,
the GPL.v3 seems to make it clear that certain terminology used in the
GPL is intended to have the same scope as the term “derivative work”
under copyright law. In particular, the terminology used in the GPL
that relates to the concept of a work based on another work has been
clarified to mean a modified version of a first work.270 Within that defi-
nition, to “modify” means “to copy from or adapt all or part of the work in
a fashion requiring copyright permission. . . .[t]he resulting work is
called a ‘modified version’ of the earlier work or a ‘work based’ on the
earlier work.”271 Additionally, to “propagate” a work has been similarly
defined as “do[ing] anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable
copyright law.”272 Finally, the term “Program” as used in the GPL.v3 is
defined as “any copyrightable work licensed under this License,”273 pre-
sumably meaning that any material not covered by copyright is not sub-
ject to the GPL.

269. ProCD, Inc. v. Zeidenberg, 86 F.3d 1447 (7th Cir. 1996).
270. Free Software Foundation, GNU General Public License, Version 3, §0, June 29,

2007, http://www.gnu.org/licenses/gpl-3.0.txt.
271. Id. (emphasis added).
272. Id. (emphasis added).
273. Id. (emphasis added).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 43 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 391

In the remainder of this paper it will be assumed that the GPL is a
bare copyright license and the analysis of the scope of the viral provi-
sions of the GPL will be done on that basis. However, as discussed
above, similar results can arise under a copyright analysis if the GPL is
construed to cover only material protectable under copyright. When dis-
cussing the GPL, any references to the viral provisions of the GPL or the
viral nature of that license should be understood to encompass the entire
spectrum of negative consequences associated with a failure to comply
with the conditions of §5(c) (or 2(b) in the case of the GPL.v2). These
negative consequences include: industry or open source community pres-
sure to designate a commercial product as free software, damages, in-
junctive relief, and loss of copyright protection in a work that unlawfully
uses GPL-licensed material.

A. THE GPL LICENSE

The viral provisions of the GPL.v3 are primarily contained in §5 and
§6 and rely on definitions in §0 and §1.274 These provisions and defini-
tions are as follows:

274. Id. See also Free Software Foundation, GNU General Public License, Version 2,
June 2, 1991, http://www.gnu.org/licenses/gpl-2.0.txt (for the corresponding provisions from
the GPL.v2:

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this
General Public License. The “Program”, below, refers to any such program or
work, and a “work based on the Program” means either the Program or any deriva-
tive work under copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the term
“modification”.) Each licensee is addressed as “you”.
2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section I above, provided that you also meet all of these
conditions: . . .
(b) You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed as
a whole at no charge to all third parties under the terms of this License. . . .
These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms,
do not apply to those sections when you distribute them as separate works. But
when you distribute the same sections as part of a whole which is a work based on
the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 44 28-SEP-10 10:21

392 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

A “covered work” means either the unmodified Program or a work
based on the Program.

“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and “recipi-
ents” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the
work in a fashion requiring copyright permission, other than the mak-
ing of an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for infringe-
ment under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution
(with or without modification), making available to the public, and in
some countries other activities as well.

The “Corresponding Source” for a work in object code form means
all the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System
Libraries, or general-purpose tools or generally available free programs
which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes in-
terface definition files associated with source files for the work, and the
source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate
data communication or control flow between those subprograms and
other parts of the work.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License . . .

5. You may convey a work based on the Program, or the modifica-
tions to produce it from the Program, in the form of source code under
the terms of section 4, provided that you also meet all of these
conditions: . . .

c) You must license the entire work, as a whole, under this Li-
cense to anyone who comes into possession of a copy. This Li-
cense will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

A compilation of a covered work with other separate and indepen-
dent works, which are not by their nature extensions of the covered
work, and which are not combined with it such as to form a larger pro-
gram, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used
to limit the access or legal rights of the compilation’s users beyond what

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 45 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 393

the individual works permit. Inclusion of a covered work in an aggre-
gate does not cause this License to apply to the other parts of the
aggregate.

The viral effects of the GPL.v3 depend on the scope of the defined
term “covered work.” The term “covered work” depends on the scope of
the terms “Program” and “work based on the Program.” The scope of the
term “Program” is relatively straightforward; it is simply the copyright-
able portions of the software in which a copyright holder has placed a
notice stating that the applicable program is being licensed under the
GPL. The term “a work based on the Program” is not defined directly,
but is given meaning in the definition of “modify.” Particularly, that def-
inition specifies that a work resulting from any copying or adaptation of
all or part of an earlier work in a fashion requiring copyright permission,
other than the making of an exact copy, is a “work based on the earlier
work.” This corresponds to the generally understood meaning of a “de-
rivative work” under copyright law. This interpretation is supported by
the definition of “propagate,” which is “[anything that] would make you
directly or secondarily liable for infringement under applicable copyright
law.”

However, there is other language in the GPL.v3 that seems to go
beyond the traditional scope of a “derivative work.” Specifically, one of
the conditions that the licensee must meet before conveying a binary ver-
sion of a “covered work” is that the licensee must also provide a copy of
the “corresponding source.” The definition of “corresponding source” pur-
ports to include “interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.” This language, which was
newly introduced in the GPL.v3, is similar to the scope of viral coverage
previously claimed by the FSF for the GPLv2. As will be discussed later,
the material that needs to be incorporated into a work to allow it to dy-
namically link to another program or to communicate with another pro-
gram via inter-process communication does not necessarily make a
calling program a derivative work of a called program. Additionally, a
program that is dynamically called by another program generally will
not be a derivative work of the calling program. The foregoing is also
generally true for programs that communicate by inter-process commu-
nication. Accordingly, to the extent the GPL.v3 is characterizing these
materials as parts of a covered work, this characterization appears to go
beyond copyright law’s established bounds, and hence makes some parts
of the GPL.v3 internally inconsistent.

The definition of a work based on the program in the GPL.v2 is simi-
lar to that in the GPL.v3. In the GPL.v2 that term is described as either

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 46 28-SEP-10 10:21

394 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

the Program or any derivative work under copyright law. As with the
GPL.v3, the GPL.v2 contains other language that potentially encom-
passes subject matter beyond a derivative work under copyright law.
Specifically, the GPL.v2 states that a derivative work is “a work contain-
ing the Program or a portion of it, either verbatim or with modifications
and/or translated into another language.” Typically, a program will con-
tain copyrightable subject matter.275 However, most programs also will
contain subject matter that is not protected by copyright. As a matter of
copyright law, a subsequent work cannot be a derivative or infringing
work of a prior work unless it has substantially copied protected subject
matter from that prior work.276 Accordingly, to the extent that the
GPL.v2 suggests that the copying of any subject matter from “the Pro-
gram” necessarily makes a subsequent work a derivative work, that
statement is incorrect. In addition to the foregoing language, §2 of the
GPL also contains language relating to derivative works. The language
in §2 states that it is not the intent of the GPL.v2 to claim or contest
rights in works written entirely by the licensee, but instead “to control
the distribution of derivative or collective works based on the Program.”
If the GPL.v2 is only a bare copyright license, then the only way this
provision can be interpreted consistently with the earlier provisions
dealing with works “based on the Program” is if that term is intended to
mean works that have substantially copied protected subject matter
from the Program.

Both the GPL.v3 and the GPL.v2 contain exemptions for “aggrega-
tions” and “mere aggregations.” In the GPL.v3, this exemption excludes
other “separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such
as to form a larger program.” This language appears to diverge from
other language in the GPL.v3 such as the definitions of “to modify” and
“to propagate” which are cast in terms of copyright concepts. In particu-
lar, this language is potentially inconsistent with other parts of the
GPL.v3 because programs can be extended or combined without copying
or adapting copyrightable subject matter. The corresponding language
in the GPL.v2 raises similar concerns. The GPL.v2 provides that “a
work not based on the program,” can be aggregated on a storage or distri-
bution medium with a Program (or a work based on a Program) without
the “work not based on the Program” being made subject to the GPL.v2.
Unfortunately, this language is difficult to construe because it does not
use standard copyright terminology. However, if this provision is to be

275. See contra Lexmark Int’l, Inc. v. Static Control Components, Inc., 387 F.3d 522 (6th
Cir. 2004) (holding that none of Lexmark’s Toner Loading Program was eligible for copy-
right protection).

276. See, MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON COPYRIGHT §3.01 3-4 (Re-
lease No. 70, June 2006).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 47 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 395

interpreted in a manner consistent with copyright law and other parts of
the GPL, then the phrase “not based on” needs to be read as “not sub-
stantially copying protected subject matter from,” which, under copy-
right law, will mean that such a work is not a derivative work.

As discussed above, the “viral” portions of both the GPL.v2 and the
GPL.v3 contain language that is potentially inconsistent. In order for
the GPL to be interpreted in a consistent manner and in order for the
GPL to cover subject matter that is consistent with its characterization
as a bare copyright license, some of the language in the GPL needs to be
construed as corresponding to the definition of derivative work and the
related right under copyright law. All of the foregoing means that a very
detailed understanding of derivative works is critical to an understand-
ing of the viral effects of the GPL. The importance of such an under-
standing was confirmed in Progress Software Corp. v. MYSQL AB.277 In
the context of a request for a preliminary injunction, the court in that
case stated that “[a]ffidavits submitted by the parties’ experts raise a
factual dispute concerning whether the Gemini program is a derivative
work or an independent and separate work under GPL ¶2.”278 The
GPL.v2 was also considered in Computer Associates Int’l., Inc. v. Quest
Software, Inc.279 However, the Computer Associates case did not ex-
amine the application of §2 of the GPL.v2. Instead, the GPL-related as-
pects of that case concerned a special exception granted by the FSF with
respect to certain files copied into an output file used to create the pro-
gram at issue.

B. DERIVATIVE WORKS

The Copyright Act defines a “Derivative Work” as:
[A] work based upon one or more preexisting works, such as a

translation, musical arrangement, dramatization, fictionalization, mo-
tion picture version, sound recording, art reproduction, abridgment,
condensation, or any other form in which a work may be recast, trans-
formed, or adapted. A work consisting of editorial revisions, annota-
tions, elaborations, or other modifications which, as a whole, represent
an original work of authorship, is a “derivative work.”280

The first thing to notice about this definition is that it requires a
pre-existing work to have been recast, transformed or adapted in some
manner.281 As described in Lee v. A.R.T. Co., to be considered a deriva-

277. Progress Software Corp. v. MySQL AB, 195 F. Supp. 2d 328 (D. Mass. 2002).
278. Id. at 329.
279. Computer Assoc. Int’l, Inc. v. Quest Software, Inc., 333 F.Supp. 2d 688, 697-98

(N.D. Ill. 2004).
280. 17 U.S.C. §101 (2010).
281. SHL Imaging, Inc. v. Artisan House, Inc., 117 F. Supp. 2d 301, 306 (S.D.N.Y. 2000)

(“any derivative work must recast, transform or adopt [sic] the authorship contained in the

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 48 28-SEP-10 10:21

396 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

tive work, a work must qualify as one of the enumerated types of work
(i.e. a translation, dramatization, fictionalization, or any of the other spe-
cifically identified categories), or qualify as “any other form in which a
work may be recast, transformed, or adapted.”282

The second point to notice about the definition of “derivative work”
is that it is very broad. In fact, the statutory language has been de-
scribed as “hopelessly overbroad”283 and it has been further observed
that almost all works are derived from pre-existing works.284 A very
broad scope of protection that does not support the fundamental goals of
copyright law becomes possible when the breadth of the derivative
works’ right is coupled with copyright protection against both literal and
non-literal copying, applied to a scientific discipline in which develop-
ment occurs in an incremental manner, and where interoperability and
standardization are critical.285

Unsurprisingly, the risk posed by a broad interpretation of the de-
rivative works right has been the subject of much comment in academic
literature.286 For example, Micro Star v. Formgen Inc., is cited as au-
thority for the proposition that a work can be considered a derivative

preexisting work”). See NIMMER & NIMMER, supra note 276, at §3.03 3-10 (“A derivative
work consists of a contribution of original material to a pre-existing work so as to recast,
transform or adapt the pre-existing work”).

282. Lee v. A.R.T. Co., 125 F.3d 580, 582 (7th Cir. 1997).
283. Micro Star v. Formgen Inc., 154 F.3d 1107, 1110 (9th Cir. 1998).
284. Emerson v. Davies, 8 F. Cas. 615, 619 (C.C.D. Mass. 1845). In this case, Justice

Storey observed:
In truth, in literature, in science and in art, there are, and can be, few, if any,
things which, in an abstract sense, are strictly new and original throughout.
Every book in literature, science and art, borrows and must necessarily borrow,
and use much which was well known and used before. . . . If no book could be the
subject of copyright which was not new and original in the elements of which it is
composed, there could be no ground for any copyright in modern times, and we
would be obliged to ascend very high, even in antiquity, to find a work entitled to
such eminence.

285. U.S. CONST. art. I, §8, cl. 8 (providing that Congress has the “Power To promote the
Progress of Science by securing for limited Time to Authors . . . the exclusive Right to Their
Writings”). The primary goal of U.S. copyright law is not to compensate or reward authors,
but to promote the progress of science and the useful arts. Accordingly, the rights granted
to authors are a means, not an end, and the rights granted to authors under copyright must
be interpreted in light of the overall constitutional goal.

286. See generally Edward G. Black & Michael H. Page, Add-On Infringements: When
Computer Add-Ons and Peripherals Should (and Should Not) Be Considered Infringing
Derivative Works Under Lewis Galoob Toys, Inc. v. Nintendo of America, Inc., and Other
Recent Decisions, 15 HASTINGS COMM. & ENT. L.J. 615 (1993); Michael Gemignani, Copy-
right Protection: Computer-Related Dependent Works, 15 RUTGERS COMPUTER & TECH. L.J.
383 (1989); Hogle, supra note 265; Lydia Pallas Loren, The Changing Nature of Derivative
Works in the Face of New Technologies, 4 J. SMALL & EMERGING BUS. L. 57 (2000); Chris-
tian H. Nadan, A Proposal to Recognize Component Works: How a Teddy Bears on the Com-
peting Ends of Copyright Law, 8 CAL. L. REV. 1633 (1990).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 49 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 397

work even if it lacks incorporated expression.287 In Micro Star, the man-
ufacturer and distributor of the video game Duke Nukem 3D objected to
the distribution of a collection of user created game levels.288 The al-
leged infringer, Micro Star, gathered approximately 300 of these user-
created levels and distributed them on a Compact Disk.289 Formgen ob-
jected to this distribution and Micro Star sought a declaratory judgment
that it was not infringing any of Formgen’s copyrights.290 In deciding
the request for a preliminary injunction, the Ninth Circuit Court of Ap-
peals ruled that Formgen had shown it was likely to succeed at trial in
establishing that Micro Star had infringed Formgen’s right to prepare
derivative works.291 Despite the academic commentary, a close reading
of Micro Star suggests that the case supports the proposition that a de-
rivative work is created when non-literal expression is copied from a fic-
tional work, rather than a case that supports the proposition that
copying incorporated expression is not required to create a derivative
work.292

In Sega Enterprises Ltd. v. Accolade, Inc., the Ninth Circuit Court of
Appeals noted that “[w]orks of fiction receive greater protection than
works that have strong factual elements, such as historical or biographi-
cal works, or works that have strong functional elements, such as ac-
counting textbooks.”293 The greater protection accorded to fictional
works helps explain the apparently broad derivative works protection
granted in certain computer-related cases. This difference also provides
a basis for concluding that similarly broad protection will not be granted
to functional works that dynamically link to or communicate with other
functional works. In virtually every case where very broad derivative
works protection has been granted to a computer-related work, that com-
puter-related work has had very strong artistic components, such as
video game graphics, characters and storylines. It has been these artis-
tic components and not the technical and functional aspects of these
works that have attracted strong derivative works protection.

Micro Star is a prime example of how an artistic component of a
work can significantly broaden the protection provided to a computer-
related work. In that case, the allegedly infringing work was the video

287. Hogle, supra note 265; Loren, supra note 286, at 73-74.
288. Micro Star v. Formgen Inc. 154 F.3d 1107 (9th Cir. 1998). The Duke Nukem game

allowed users to create, play and store their own game levels. Id.
289. Id.
290. Id.
291. Id.
292. The Micro Star case can also be viewed as one in which non-literal aspects of the

Duke Nukem 3D MAP files were copied in the user-created game levels.
293. Sega Enterprises Ltd. v. Accolade Inc., 977 F.2d 1510, 1524 (9th Cir. 1992) (cita-

tions omitted).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 50 28-SEP-10 10:21

398 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

game Duke Nukem 3D.294 The game consisted of three distinct ele-
ments: the game engine, the source art library, and the MAP files.295

The game engine was a computer program that directed the operation of
the game.296 This program instructed the underlying hardware when to
read data, play sounds and display images on a video screen.297 The
game engine also provided an ability to save and load games.298 The
source art library was simply a repository of information describing vari-
ous images used when the game was playing. The MAP files contained
information used by the game engine to construct and populate levels in
the Duke Nukem 3D game.299 When the game was started, the game
engine would extract images from the source art library for the various
components identified in the MAP file for the level being played.300

These images were then presented on the video display.301

In Micro Star, the Ninth Circuit Court of Appeals made it very clear
that the protected work was the Duke Nukem story and that the non-
literal expression copied by the defendant included the characters, set-
tings and plot of the Duke Nukem story.302 The Ninth Circuit’s ap-
proach is interesting because the court did not accept Micro Star’s
defense that the MAP files were not derivative works because they did
not incorporate any protected expression from the Duke Nukem pro-

294. Micro Star v. Formgen Inc. 154 F.3d 1107 (9th Cir. 1998).
295. Id. at 1110.
296. Id.
297. Id.
298. Id.
299. Id.
300. Micro Star, 154 F.3d at 1110.
301. Id.
302. Id. at 1112 (stating:

In making [its] argument, Micro Star misconstrues the protected work. The work
that Micro Star infringes is the D/N-3D story itself—a beefy commando type
named Duke who wanders around post-Apocalypse Los Angeles, shooting Pig Cops
with a gun, lobbing hand grenades, searching for medkits and steroids, using a
jetpack to leap over obstacles, blowing up gas tanks, avoiding radioactive slime. A
copyright owner holds the right to create sequels, see Trust Co. Bank v. MGM/UA
Entertainment Co., 772 F.2d 740 (11th Cir.1985), and the stories told in the N/I
MAP files are surely sequels, telling new (though somewhat repetitive) tales of
Duke’s fabulous adventures. A book about Duke Nukem would infringe for the
same reason, even if it contained no pictures.) (emphasis added).

The reference to the MGM case and the nebulous “right to create sequels” is unfortunate,
because that case contains no significant analysis of copyright protection for derivative
works. A more thoughtful examination of this issue (in the context of the very same pre-
existing work – Gone With The Wind) is provided in Sun Trust Bank v. Houghton Mifflin
Co., 252 F.3d 1165 (11th Cir. 2001). In that case, the Eleventh Circuit Court of Appeals
found substantial similarity between the pre-existing work Gone With The Wind and the
subsequent work The Wind Done Gone. The finding of substantial similarity was based on
the use of numerous characters, settings and plot twists from the pre-existing work.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 51 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 399

gram.303 Instead of examining whether Micro Star had infringed the
Duke Nukem program, the court focused on the Duke Nukem story.
Having made this choice, the conclusion that Micro Star had copied non-
literal elements of the Duke Nukem story was relatively easy for the
court to reach. However, the outcome may have been different if the
court had chosen to examine the case from a more software-based
perspective.

Micro Star’s defense was based on the fact that the MAP files refer-
enced the source art library but did not contain any actual source art
files. While this proposition was undoubtedly true, this fact alone does
not necessarily mean Micro Star did not infringe the Duke Nukem pro-
gram. The MAP files did not contain any source art, but the MAP files
were still based on the structure, sequence and organization of the game
engine and the source art library, thereby enabling the game engine to
properly read those files and identify the parts of the source art library to
be displayed for a particular game level. If a software-based approach
had been used, the question would still have been one of non-literal in-
fringement. However, the work at issue would not have been a fictional
or artistic work, which is entitled to broad copyright protection. Instead,
it would have been a functional work, which is entitled to narrower pro-
tection. In addition, under a software-based approach, the Ninth Circuit
also would have to determine whether the MAP files were part of a
method of operation for the Duke Nukem 3D program. By selecting the
Duke Nukem story as the initial work and by granting broad copyright
protection to the characters, settings and plot of the Duke Nukem story,
the Ninth Circuit also granted the copyright holder a de facto monopoly
over the MAP file format. The Micro Star case is probably atypical be-
cause the fact that a functional work was overlaid with a fictional work
meant that the functional work was granted a level of copyright protec-
tion more typical for a fictional work.

For programs linking to or communicating with GPL-licensed works,
the type of non-literal copying that may occur will be highly correlated to
the function of those programs. In the vast majority of cases these types
of linkages and communication mechanisms will not be overlaid with an
artistic work that invites broad copyright protection.304 Accordingly, it

303. In other cases the structure, sequence and organization of input files have been
found to be non-literal elements entitled to copyright protection. Accordingly, it could have
been argued that Micro Star was copying non-literal elements of the Duke Nukem
program.

304. It would be unusual for a case involving linking or inter-process communication to
also involve an audio-visual work or any fictional or artistic subject matter. Instead, the
circumstances are more likely to be similar to those described in Mitchell Zimmerman,
Baystate: Technical Interfaces Not Copyrightable-On to the First Circuit, 14 THE COMPUTER

LAWYER 9, 9 (Apr., 1997).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 52 28-SEP-10 10:21

400 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

appears that the derivative works cases that have been most criticized
for providing overly broad protection will be of little relevance when de-
termining whether linking to or communicating with another program
makes the linking or communicating program a derivative work. Since
works in a case involving linking or inter-process communication will be
very different from the highly artistic work considered in Micro Star, and
since the scope of protection to be provided to more functional works is
significantly narrower than that provided to highly artistic works, Micro
Star (and similar cases dealing with highly artistic subject matter) are
probably going to be easy to distinguish from linking and inter-process
communication cases.305

305. For example, in Worlds of Wonder, Inc. v. Veritel Learning Sys., Inc., 658 F. Supp.
351 (N.D. Tex. 1986) and Worlds of Wonder, Inc. v. Vector Intercontinental, Inc., 653 F.
Supp. 135 (N.D.Ohio 1986), the pre-existing audio-visual work was a Teddy Bear that
moved and told a story. In Worlds of Wonder v. Veritel, 658 F.Supp. at 356, the court said
the subsequent work “creates a substantially similar audiovisual work which is altered in
much the same as [sic] a Galaxian game is altered by a speed up kit” (emphasis added). In
Worlds of Wonder v. Vector, 653 F.Supp. at 139, the court described its substantial similar-
ity analysis as follows, “During the hearing, the Court compared the work created when a
W.O.W. cassette activated Teddy Ruxpin and the work created when a Vector tape acti-
vated Teddy Ruxpin.” The court noted a number of similarities such as the use of a male
voice with a similar tone, pitch and pace as well as the visual impression of the eyes, nose
and mouth movement. Id. The court then observes that “the general feel and concept of
Teddy Ruxpin when telling a fairy tale is the same regardless of whether a W.O.W. or a
Vector tape is used; the visual affects [sic] are identical, and the voices are similar, and the
difference in stories does not alter the aesthetic appeal.” Id. at 140. In Midway Mfg. Co. v.
Artic Int’l, Inc., 704 F.2d 1009 (7th Cir. 1983), the pre-existing works are once again audio-
visual works, in this case, speeded-up versions of the video games Galaxian and Pac-Man.
In Midway, the court concluded that the speeded-up Galaxian and Pac-Man games were
derivative works. Id. While the approach taken by the court in making this determination
is somewhat different than the usual substantial similarity analysis, it was primarily
based on the fictional/artistic aspects of the pre-existing work rather than its software
characteristics. In particular, the court said:

It is not obvious from [the definition of a derivative work] whether a speeded-up
video game is a derivative work. A speeded-up phonograph record probably is not.
But that is because the additional value to the copyright owner of having the right
to market separately the speeded-up version of the recorded performance is too
trivial to warrant legal protection for that right. A speeded-up video game is a
substantially different product from the original game. As noted, it is more excit-
ing to play and it requires some creative effort to produce. For that reason, the
owner of the copyright on the game should be entitled to monopolize it on the same
theory that he is entitled to monopolize the derivative works specifically listed in
Section 101. . . . But the amount by which the language of Section 101 must be
stretched to accommodate speeded-up video games is, we believe, within the limits
within which Congress wanted the new Act to operate. (citations omitted) Id. at
1014.

Another line of derivative works cases dealing with the mounting of note cards, litho-
graphs, and cutouts from art books onto ceramic tiles: Mirage Editions, Inc. v. Albuquerque
A.R.T. Co., 856 F.2d 1341 (9th Cir. 1988), Munoz v. Albuquerque A.R.T. Co., 829 F. Supp.
309 (D.Alaska 1993), Lee v. A.R.T. Co., 125 F.3d 580 (7th Cir. 1997), can be similarly dis-
tinguished from linking and inter-process communication on the basis that these cases

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 53 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 401

Once the cases dealing with audiovisual works or other artistic
works have been distinguished, a derivative works analysis in a software
setting becomes a matter of applying a number of well-known copyright
principles. Admittedly, these well-known principles may have to be ap-
plied in technical areas that have not received significant judicial consid-
eration, but at least there is a reasonable basis for predicting likely
outcomes.

The first principle in a derivative works analysis is that a work can-
not be a derivative work unless it has substantially copied protected ma-
terial from a prior work.306 Phrased another way, a work will not be a
derivative work unless it is also an infringing work because of the mate-
rial copied from the pre-existing work.307 Due to this limitation, the
term derivative work does not include all works that borrow to some de-
gree from pre-existing works.308 If a subsequent work copies material
from a pre-existing work that is not subject to copyright protection, then
that subsequent work cannot be a derivative work of the pre-existing
work.

The determination of whether one work is substantially similar to
another work is not limited to literal copying. It is a well-established
copyright principle that the copying of non-literal material from a pre-
existing work can satisfy the substantial similarity requirement and
make a subsequent work a derivative work. This principle is significant
because it means that a work can become a derivative work by copying
the structure, sequence and organization of another work.309 Therefore,
cases like Computer Associates International, Inc. v. Altai, Inc.,310 Gates
Rubber Co. v. Bando Chemical Industries, Ltd.311 and the numerous
other cases dealing with non-literal copying are very significant in con-
ducting a derivative works analysis. The use of the substantial similar-
ity standard also means that various concepts, such as: merger; scènes à
faire; exclusion of copyright protection for ideas, procedures, processes,

once again deal with artistic works rather than functional works. In these cases, even when
applying the artistic standard of protection, two circuit courts of appeal have expressed
conflicting views about whether the mounting of pre-existing art onto ceramic tiles results
in the creation of a derivative work.

306. Micro Star v. Formgen, Inc., 154 F.3d 1107, 1110 (9th Cir. 1998); Vault Corp. v.
Quaid Software Ltd., 847 F.2d 255, 267 (5th Cir. 1988); Litchfield v. Spielberg, 736 F.2d
1352, 1357 (9th Cir. 1984); SHL Imaging, Inc. v. Artisan House, Inc., 117 F. Supp.2d 301,
305 (S.D.N.Y. 2000); NIMMER & NIMMER, supra note 276, at §3.01 3-4.

307. NIMMER & NIMMER, supra note 276, at §3.01 3-4.
308. Id.
309. Dan Ravicher, Software Derivative Work: A Circuit Dependent Determination,

GROKLAW, Nov. 8, 2002, http://www.groklaw.net/pdf/ravicher_1.pdf.
310. Computer Assoc. Int’l, Inc. v. Altai, Inc., 982 F.2d 693 (2d Cir. 1992).
311. Gates Rubber Co. v. Bando Chemical Indus., Ltd., 9 F.3d 823 (10th Cir. 1993).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 54 28-SEP-10 10:21

402 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

systems, and methods of operation; and the requirements for originality
are also very significant.

Therefore, a derivative works analysis of linking or inter-process
communication with a GPL-licensed program will involve an assessment
of whether that program has substantially copied protectable subject
matter from the GPL-licensed program. The first step in this process
will be to identify those portions of the GPL-licensed program that are
copied by a linking or communicating program. The next step will be to
determine whether the copied material has been transformed, recast or
altered in the calling or communicating work. If this has not happened,
then the calling or linking program cannot be a derivative work. The
calling or linking program may infringe other rights protected under cop-
yright, such as the reproduction right, but it cannot infringe the deriva-
tive work right.312The material copied from a GPL-licensed program
must also be examined to determine whether it is protectable subject
matter under copyright. Once all protectable subject matter has been
identified, that material needs to be assessed to determine whether it is
a substantial part of the GPL-licensed program. Finally, when con-
ducting this analysis it is important to remember that copying may be
both literal and non-literal.

C. GPL “VIRAL” EFFECTS AND STATIC LINKING

This section will examine whether static linking to a GPL-licensed
library will make the linking program a derivative or infringing work of
the linked library and thereby engage the viral provisions of the GPL.
The first step in the analysis of static linking is to identify the copied
material. As described in § II.B, a statically linked ELF object file con-
tains various symbol names gathered from the program itself and from
any linked libraries. When a calling program statically links to a GPL-
licensed library, the symbol names in the GPL-licensed library that are
referenced by the calling program will be copied into its object code file.
In addition, a statically linked program will also contain object code for
any routines called from any linked libraries.313 A calling program may

312. Under the GPL.v2 this distinction may be significant since the viral provisions of
the GPL.v2 appear to only apply if a derivative work has been created. Given the other-
wise broad licenses in the GPL, it is conceivable that under the GPL.v2 a work that copies a
portion of a GPL-licensed work, without becoming a derivative work may be distributed
without engaging any viral obligations. This loophole, if it exists, appears to have been
closed in the GPL.v3, which uses broader terminology that is not limited to derivative
works.

313. This assumes that the calling program is invoking a function or procedure. While a
calling program may link to a library simply to obtain access to a particular data structure
definition or global variable, the much more common case will involve a calling program
that invokes one or more functions or procedures in a linked library.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 55 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 403

also copy other non-literal elements from linked libraries. For example,
to the extent a calling program uses non-literal aspects of a library, such
as data structures or other structure, sequence or organization, these el-
ements can also support a finding of substantial similarity. That being
said, in all but rare circumstances, the verbatim copying of object code
from a linked library will be the determinative factor in deciding
whether a calling program is a derivative or infringing work of a stati-
cally linked library.

Having identified the copied material, the next step in the derivative
works analysis is to determine whether that material has been recast,
transformed or adapted. According to The Merriam-Webster Online Dic-
tionary, “adapt” means “to make fit (as for a specific or new use or situa-
tion) often by modification.”314 Object code in a library is in a form that
allows that code to be included in other programs. Object code that has
been statically linked into a program is in a form that allows that com-
puter to execute a code. Accordingly, it seems reasonably certain that
the transformative requirement has been met since the copied material
has been taken from a setting in which it can be included in programs
and it has been put in a setting in which a computer can execute it.315

The final step in the analysis is to determine whether the copied
material represents a substantial copying of the pre-existing work. This
is a qualitative rather than a purely quantitative analysis.316 Therefore,
the assessment is not simply done on the basis of how much material is
copied, but instead involves an examination of the significance or impor-
tance of the copied material when compared to the work as a whole.317

This assessment is necessarily fact dependent and will vary according to
the particular functions and routines invoked by a calling program and
their relative significance in the context of the called library as a whole.
That being said, it seems reasonable to assume that most commercial
uses of a statically linked GPL-licensed library will result in the copying
of a qualitatively significant portion of the library. If this was not the
case, there would be little reason to use the library since a trivial amount
of code, or code that is trivial to implement, can be easily written by a
developer without incurring the risk of any GPL viral effects.318 In most

314. Merriam-Webster Online Dictionary, Adapt, http://www.m-w.com/dictionary/adapt
(last visited Apr. 26, 2009).

315. In addition to changing the purpose for which the code is used, the structure sur-
rounding the program is significantly different and the manner in which the code is ac-
cessed is also quite different.

316. Gates Rubber Co. v. Bando Chemical Indus., Ltd., 9 F.3d 823, 839 (10th Cir. 1993).
317. Id. at 839-40 n.15.
318. By writing such code the developer will avoid any GPL effects. Given the limited

benefits of using a trivial or minor amount of functionality from a GPL-licensed library, the
associated risk does not seem justifiable.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 56 28-SEP-10 10:21

404 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

cases, a GPL-licensed library is going to be used because the library con-
tains complex, high-quality code that has been tested through broad use.
If the code being used is de minimus, the benefits of using open source
software are not significant.319

1. A Comparison with the Free Software Foundation Position on
Static Linking

The FSF has said that “if the modules are included in the same exe-
cutable file, they are definitely combined in one program.”320 By this
statement, the FSF is saying that static linking engages the viral provi-
sions of the GPL.

While most static linking will make a calling program a derivative or
infringing work, a definitive determination will necessarily depend on
the actual amount and type of material copied in each case. A derivative
or infringing work is less likely to be created when the number of proce-
dures or functions used from a statically linked library is very low, when
those functions and procedures are relatively small, and when the bulk
of the material in those functions and procedures can be excluded from
copyright protection under one or more limiting doctrines.321 If a calling
program is statically linked to routines containing no copyrightable sub-
ject matter, then the calling program cannot become a derivative or in-
fringing work of the called library and cannot engage the viral provisions
of the GPL.322

319. A small amount of code can be written and tested in a reasonably short period of
time; accordingly there should not be any significant time-to-market benefit from using a
small amount of open source. Additionally, if the code in question is straightforward, it is
unlikely there will be any significant quality issues. In such cases, a developer should be
able to write the required code correctly because it will not be complicated. The benefit of
having thousands of developers reviewing such limited amounts of code should not signifi-
cantly improve its quality.

320. Free Software Foundation, Frequently Asked Questions About Version 2 of the
GNU GPL, http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html (last visited Aug. 14,
2010).

321. See Gates Rubber Co. v. Bando Chemical Indus., Ltd., 9 F.3d 823, 836-38 (10th Cir.
1993) (describing these limiting doctrines). Among the limitations listed in that case are
(a) the idea-expression dichotomy, (b) the process-expression dichotomy, (c) facts, (d) public
domain, (e) the merger doctrine, and (f) scènes à faire. Id. In Computer Assoc. Int’l, Inc. v.
Altai, Inc., the court identified the following types of unprotected subject matter: elements
dictated by efficiency, elements dictated by external factors, and elements taken from the
public domain. Computer Assoc. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 707-10 (2nd Cir.
1992).

322. Such a scenario is more likely if the particular function or procedure implements a
well-known protocol that does not originate from the writer of the particular library. In
such a case there may be so little copyrightable material that even verbatim copying will
not render a calling program a derivative work.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 57 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 405

The foregoing analysis largely agrees with the FSF position and the
large majority of writers who have considered this issue. However, this
analysis differs from the FSF position to the extent that it acknowledges
the possibility that there are certain limited scenarios in which static
linking to a GPL-licensed library does not necessarily make a calling pro-
gram a derivative or infringing work of that library.323

2. Conclusion – GPL “Viral” Effects and Static Linking

Virtually all commercial-level instances of static linking to a GPL-
licensed library are going to cause the calling program to become a deriv-
ative or infringing work of the called library. Thus, this will engage the
viral provisions of the GPL.

D. GPL “VIRAL” EFFECTS AND DYNAMIC LINKING

In this section dynamic linking to a GPL-licensed library will be ex-
amined. In particular, this section will consider the question of whether
dynamic linking makes a linking program a derivative or infringing
work and thereby engages the viral provisions of the GPL.

As described in Section II.C for an ELF format file, a dynamically
linked object file contains various symbol names. As in the case of a stat-
ically linked object file, some of these symbol names will be external sym-
bols from any linked GPL-licensed libraries. However, unlike the case of
a statically-linked object file, a dynamically linked object file will not
contain any object code from any GPL-licensed libraries to which it is
being linked. The issue of non-literal copying remains relevant because
the use of data structures, protocols, APIs and parameter lists from a
called library may result in copying of non-literal elements of that li-
brary. Accordingly, the scope of copyright protection accorded to non-
literal elements of a software program needs to be examined in detail.
Finally, since compilation is a multi-stage process, the various program
formats in that process will need to be examined to see if they are deriva-
tive works of any libraries to which they are linked and whether those
intermediate program files affect the legal status of the final form of the
resulting ELF object file.

323. Frequently Asked Questions about Version 2 of the GNU GPL, supra note 320.
The “combined in one program” language is yet another way in which the FSF attempts to
describe the criteria that engage the viral provisions of the GPL. Id. While the language
used in the GNU FAQ is not used in the GPL itself, it is useful for a commercial vendor
contemplating GPL software use to consider this language since it is indicative of the FSF’s
interpretation of the GPL. The FSF also says “Combining two modules means connecting
them together so that they form a single larger program. If either part is covered by the
GPL, the whole combination must also be released under the GPL — if you can’t, or won’t,
do that, you may not combine them.” Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 58 28-SEP-10 10:21

406 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

1. A Derivative Works Analysis of Dynamic Linking

Unlike the case with static linking, an analysis of whether dynamic
linking engages the viral provisions of the GPL is not straightforward.
In fact, many legal scholars have considered this issue and reached dif-
fering conclusions.324 Before considering the more complex issues, this
analysis will deal with certain issues that are more easily resolved. The
first of these preliminary issues relates to the material to be considered
when determining whether a dynamically linked program is a derivative
or infringing work of a library to which it is being linked.

The derivative work requirement for the copied material to have
been recast, transformed or adapted appears to have been met. When in
a dynamically linkable library, the various function, procedure, variable,
and data structure definitions are in a form that allows them to be refer-
enced in other programs. Dynamically linking to these function, proce-
dure, variable and data structure definitions causes the storage of data
and references and the creation of binary code within a linking program
that will allow execution to pass from the linking program to the linked
library once both of those programs have been loaded onto a com-
puter.325 In the case of data structure definitions, the transformation is
somewhat less clear. In both a linking program and a linked library, the
purpose of a data structure definition is to provide information about the
layout of the defined structure and its constituent elements. In each
case, the linking program and the linked library are using the data struc-
ture definition to understand the actual layout of data in computer mem-
ory to allow other parts of a program to access and use the relevant data
as intended. Perhaps the only transformative difference is that in the
context of a linking program, the data structure is being used in a differ-
ent program from the one in which it was originally defined. Notwith-
standing the possible difficulties in identifying a transformative use for
data structure definitions, it still seems reasonably certain that the
transformative requirement for a derivative work will be met when con-
sideration is given to all of the material typically copied from a GPL-
licensed library for dynamic linking.

Another issue that can be addressed with a reasonable degree of cer-
tainty relates to the significance of the various intermediate files created
during the compilation process. As discussed in the case law and legal
literature, computer programs generally exist in two forms – source code
and object code. This, however, is a simplification, since the compilation

324. See supra note 11.
325. As described earlier in Section II.C, dynamic linking uses a symbol table, GOT and

PLT and various jump and load instructions to cause the absolute addresses of referenced
variables or called procedures to be dynamically linked into the object code of a calling
program.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 59 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 407

process causes the creation of a variety of intermediate files. For dynam-
ically linked programs, the source code file, the assembly language file,
and the object file contain equivalent material from a copyright perspec-
tive. The source code file will contain one or more include statements
and various references to global variables, functions, procedures and
data structures and their sub-elements. The assembly language file and
the object file will contain the names of the global variables, functions,
and procedures referenced in the source code file. These files will also
contain the names of the libraries to be dynamically linked. Finally, the
source, assembly and object code files will all potentially contain non-
literal elements from linked object libraries. Accordingly, an analysis of
whether the source, object, and assembly language files are derivative
works of a linked library requires a consideration of equivalent
material.326

However, the intermediate file created by the C Preprocessor is dif-
ferent. As described earlier, each include statement is a directive to the
C preprocessor to cause the include statement to be replaced with the
entire contents of the file name referred to in that statement. Accord-
ingly, an intermediate file will contain all of the materials from the
source code file plus all of the materials contained in any files referenced
in any include statements in the source code file. In many cases, the use
of include statements will cause the inclusion of a significant quantity of
qualitatively significant copyrighted material into the intermediate file.
While each substantial similarity analysis will always be fact dependent,
in most cases the inclusion of such a large amount of material is going to
be substantial enough for an intermediate file to become a derivative or
infringing work of any GPL-licensed libraries to which it is being linked.
If intermediate files were to be distributed they would almost certainly
engage the viral provisions of the GPL.

Even though an intermediate file is likely to be a derivative work of
a library to which it is being linked, it does not appear that the final
object file is also necessarily a derivative work. Under the GPL.v3, the
viral provisions are triggered by modification and propagation. Each of
these terms as used in the GPL is dependent on the occurrence of an act
requiring copyright permission or an act giving rise to copyright infringe-
ment.327 Since intermediate files are not normally distributed with com-

326. From a copyright perspective, the inclusion of the file name of a linked object li-
brary probably does not change the derivative work analysis significantly.

327. Similarly, under the terms of Section 2(b) of the GPL.v2, “You must cause any
work that you distribute or publish, that in whole or in part contains or is derived from the
Program or any part thereof, to be licensed as a whole at no charge to all third-parties
under the terms of this License.” Free Software Foundation, GNU General Public License,
Version 2, §0, June 29, 2007, http://www.gnu.org/licenses/gpl-3.0.txt.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 60 28-SEP-10 10:21

408 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

mercial products,328 the viral provisions of the GPL are not engaged
simply because an intermediate file is created during compilation. The
analysis, however, does not end there. One must also consider whether
the creation of an intermediate file that is a derivative work of a dynami-
cally linked library consequently means that the final object code file will
also be a derivative work. This analysis requires an examination of the
relationship between the various forms of a computer program. Since
this relationship has not been definitively established, the analysis is
speculative.329330

While copyright protection is well established for both the source
and object code forms of a computer program,331 the theoretical basis
upon which copyright is extended to the object code form of a computer
program and the relationship between the source and the object code
forms of a computer program have not been clearly articulated.332 At
first glance, the object code version of a computer program appears to be
a derivative work of the corresponding source code version of that com-
puter program since compilation appears to translate human compre-
hensible source code into machine executable object code. The definition
of “derivative work” in 17 U.S.C. § 101 reinforces this impression since it

328. In fact, it would be highly unusual to distribute such files with a commercial
software program.

329. See generally, I. Trotter Hardy, Jr., Six Copyright Theories for the Protection of
Computer Object Programs, 26 ARIZ. L. REV. 845 (1984). See also, Mathias Strasser, A New
Paradigm in Intellectual Property Law? The Case Against Open Source, 2001 STAN. TECH.
L. REV. 4, 31-4 (2001) (discussing the theoretical and doctrinal difficulties in justifying the
extension of copyright protection to object code).

330. In fact, the various intermediate forms of a computer program do not appear to
have been considered in a single reported case in the United States.

331. NIMMER & NIMMER, NIMMER, supra note 276, at §2.04 (stating that case law has
held that a computer program in either source or object code is a form of “literary work”
because it is “expressed in words, numbers or other verbal or numerical symbols or indi-
cia”). Further, by definition, a computer program is “a set of statements or instructions to
be used directly or indirectly inf a computer.” 17 U.S.C. §101 (1999) (emphasis added). Be-
cause a computer cannot execute source code, the use of the word “indirectly” has been
interpreted to mean that the source code form of a computer program is included in the
definition of computer program and hence protected. Because a computer can execute ob-
ject code, the use of the word “directly” has been interpreted to mean that the object code
form of a computer program is also included within the definition of computer program and
hence protected. The courts expressed some initial doubt. See Data Cash Sys., Inc. v.
JS&A Group, Inc., 480 F.Supp. 1063 (N.D. Ill. 1979), aff’d on other grounds, 628 F.2d 1038
(7th Cir. 1980); Apple Computer, Inc. v. Franklin Computer Corp. (Franklin Computer I),
545 F.Supp. 812 (E.D. Pa. 1982). The jurisprudence now firmly supports copyright protec-
tion for computer programs in object code format. See, Apple Computer, Inc. v. Formula
Int’l, Inc., 562 F.Supp. 775 (C.D. Cal. 1983) aff’d, 725 F.2d 521 (9th Cir. 1984); Apple Com-
puter, Inc. v. Franklin Computer Corp. (Franklin Computer II), 714 F.2d 1240 (3rd Cir.
1983); Williams Elecs., Inc. v. Artic Int’l, Inc., 685 F.2d 870 (3rd Cir. 1982); Midway Mfg.
Co. v. Strohon, 564 F.Supp. 741 (N.D. Ill. 1983).

332. Mathias Strasser, supra note 329, at 31-4.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 61 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 409

includes translations as one of the listed examples of derivative works.
Therefore, intuitively, the characterizing object code programs as deriva-
tive works of source code programs has great appeal.

However, some commentators have suggested that such an approach
causes significant doctrinal difficulties.333 It has been argued that the
use of a compiler to create an object code program does not involve any
originality from the developer of the corresponding source code program.
In the United States, originality is a Constitutional pre-requisite for cop-
yright protection; and a lack of originality will preclude copyright protec-
tion. It has been suggested that if there is any originality in the
compilation process, the only possible source for that originality is the
developer of the compiler.334 This would lead to absurd and unworkable
results because, theoretically, a developer of a source code program
would not be able to distribute the object code version of that program
without getting permission or license from the compiler developer.335

Reference has also been made to United States Copyright Office practice,
which does not allow separate registrations for the source and object code
versions of a computer program because the Office maintains the view
that there are no copyrightable differences between them.336

The position taken by the Copyright Office is not unreasonable.
However, it is also possible to construct reasonable arguments for the
opposite position. Copyright will subsist in a work if it is original, mean-
ing that it has not been copied from another work and contains some
minimal degree of creativity.337 If an object code file is compared to its
corresponding source code file there can be little doubt it has not been
copied (at least in a literal sense) – one consists of mnemonics, mathe-
matical operators and various other human readable content and the

333. See Id. See also Trotter Hardy, supra note 329, at 845, 850-52.
334. Mathias Strasser, supra note 329, at 33.
335. Strasser, supra note 329, at 33.
336. See United States Copyright Office, Compendium II: Copyright Office Practices,

§ 323.01(4), available at http://ipmall.info/hosted_resources/CopyrightCompendium/chap-
ter_0300.asp. (“Since the object code version does not contain copyrightable differences;
there is no basis for a separate copyright registration for the object code. The Office will
communicate with the applicant suggesting a single registration for the computer
program”).

337. Feist Publications, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 345 (1991):
[T]he sine qua non of copyright is originality. To qualify for copyright protection, a
work must be original to the author. Original, as the term is used in copyright,
means only that the work was independently created by the author (as opposed to
copied from other works), and that it possesses at least some minimal degree of
creativity. To be sure, the requisite level of creativity is extremely low; even a
slight amount will suffice. The vast majority of works make the grade quite easily,
as they possess some creative spark, ‘no matter how crude, humble or obvious’ it
might be. Originality does not signify novelty; a work may be original even though
it closely resembles other works so long as the similarity is fortuitous, not the
result of copying.” Id. (citations omitted).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 62 28-SEP-10 10:21

410 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

other consists of binary processor instructions. Once the issue of copying
has been dealt with, only the originality requirement remains. If two
different, non-trivial source code programs are compiled, the resulting
object code files will almost certainly be very different. The reason for
this is that the source code input to a compiler has a huge impact on the
object code produced by that compiler. Therefore, the creative effort of
the author of the source code program should similarly have an enor-
mous effect on the object code file produced by a compiler.

One of the arguments for the proposition that object code files are
not derivative works of the corresponding source code files is that there
is no subsequent author and, as a result, object code files cannot be origi-
nal.338 This argument assumes that none of the originality an author
adds to a source code program is manifested in other forms of that pro-
gram. However, this argument fails to consider the dual nature of
software and in particular the dual nature or purpose of source code.
Professor Randell Davis has observed that “[s]oftware is a ‘machine’
whose medium of construction happens to be text.”339 While the source
code version of a program may at first glance appear to resemble other
literary works, it differs in a number of important respects. The most
fundamental of these differences is that the object code version of that
source code program behaves. Programs exist in a textual format so they
can be created and modified. One intended purpose for source code is to
instruct and educate subsequent programmers who are going to main-
tain or enhance a computer program. These programmers must be able
to read and understand a program so they can make the changes neces-
sary to either repair or improve it. The second purpose for source code is
to act as input to another program called a compiler,340 to direct that
program to construct an object code machine to perform the task for
which the source code was initially created. The source code will have a
profound effect on the object code machine actually constructed.

When a programmer writes a source code program, he or she will try
to write that program in a clear and elegant manner so it can be easily
understood by other programmers. Assuming a program is non-trivial, a
programmer’s efforts to write clear and elegant source code should infuse
that code with the “creative spark” mandated by Feist to meet the origi-
nality requirement for copyrightability. However, programmers do not
simply develop source code programs to be read by other programmers.
Commercial computer programs are developed to operate on actual com-

338. Hardy, supra note 329, at 851.
339. Randell Davis, Intellectual Property and Software: The Assumptions are Broken, in

WIPO WORLDWIDE SYMPOSIUM ON THE INTELLECTUAL PROPERTY ASPECTS OF ARTIFICIAL IN-

TELLIGENCE 101, 110 (1991).
340. Source code programs may also contain instructions and input to be used by link-

ers and loaders.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 63 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 411

puters. When a programmer writes a source code program, the program-
mer must consider the ultimate goal – the creation of a binary code
program that will operate effectively on a computer. This goal will dic-
tate many aspects of the overall design of the program. For example, a
programmer may need to consider whether a particular piece of code can
be multi-threaded, whether a particular instance of a data structure
needs to be locked when it is updated, and whether there are real-time
requirements that necessitate a maximum or minimum processing time
for a particular operation. A programmer’s efforts to write source code to
address such considerations is once again likely to infuse the correspond-
ing source code with the “creative spark” needed for originality. How-
ever, a programmer will not succeed unless his or her originality and
creativity manifests itself in the end product – a functioning binary pro-
gram. Accordingly, it does not seem reasonable that the law should limit
the creative spark supplied by a programmer to the source code version
of a program and extinguish that creative spark simply because it has
been passed through a compiler. A compiler cannot create anything
without the input and creativity supplied by the programmer who wrote
the source code. A compiler is the mechanism by which some of the origi-
nality and creativity in the source code are conveyed to and ultimately
manifested in an object code program. The fact that source code is used
to convey this originality should not diminish the fact that this original-
ity is actually manifested in the object code. Assuming that the source
code provided to a compiler is original, it seems reasonable to conclude
that the resulting object code is also original.

Another argument against object code being a derivative work of the
corresponding source code program is based on the “purely mechanical
means” restriction developed in connection with sound recordings.341

This objection does not seem appropriate in the context of computer pro-
grams for a number of reasons. First, in the context of sound recordings,
a mechanical means simply duplicates the work and there is no recasting
or transformation of the work. Furthermore, a musical work always
serves the same purpose no matter what the recording medium. As dis-
cussed above, computer programs in source and binary forms serve dif-
ferent purposes. Second, musical works are simply not particularly
analogous to computer programs. Musical works have no functional pur-
pose and are not created knowing that they will have to undergo another
process to transform them to the form required for their main use. When
a musician creates a musical work, his or her creativity is focused on one
main goal - enjoyment of that work by an audience. When developing a
computer program, a programmer focuses his or her creativity on com-
prehension, maintenance, and extension of the program by other pro-

341. Hardy, supra note 329, at 851-52.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 64 28-SEP-10 10:21

412 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

grammers, and also on the operation of the binary version of the program
on an actual computer.

Certain statements made in the final CONTU report have also been
cited in support of the proposition that there is not enough originality in
the object code version of a computer program for it to be a derivative
work of the corresponding source code program.342 In that report, in
connection with a discussion about the use of a computer to create new
works, the Commissioners stated that a musical work created by a com-
puter could be copyrightable, as long as the would-be copyright owner
“exercised sufficient control over the production of the work to be consid-
ered its author.”343 The CONTU report did not specify the level of con-
trol required for a creator to be considered an author in such
circumstances. If one considers the creation of an object code program, it
is evident that a compiler can do very little unless it is given detailed
instructions - those instructions are given in the form of a source code
program. A source code program acts as a series of instructions to a com-
piler for building an object code program. When viewed from this per-
spective, it is apparent that the developer of a source code program
exerts a great deal of control over the creation of an object code pro-
gram.344 The CONTU Commissioners also observed that:

Thus, it may be seen that although the quantum of originality
needed to support a claim of authorship in a work is small, it must nev-
ertheless be present. If a work created through application of computer
technology meets this minimal test of originality, it is copyrightable.
The eligibility of any work for protection by copyright depends not upon
the device or devices used in its creation, but rather upon the presence
of at least minimal human creative effort at the time the work is
produced.

By the plain language of the report, the CONTU Commissioners
were open to the creation of copyrightable works using computer technol-
ogy. Furthermore, when the statements made in the CONTU report
about computer-created works are properly considered it is evident that
they actually support the proposition that an object code program has
the requisite creativity for copyright protection. The only requirement in
the CONTU report that appears to be even minimally troublesome is the
requirement that the creative effort occur at the time the work is pro-
duced. However, it is unlikely the CONTU Commissioners intended to
establish an arbitrary temporal requirement. From a copyright perspec-
tive, it should make no difference whether a creator interacts with a com-

342. Id. at 852.
343. See NAT’L COMM. ON NEW TECHNOLOGICAL USES OF COPYRIGHTED WORKS, FINAL

REPORT 46 (1978), available at http://digital-law-online.info/CONTU/PDF/index.html.
344. See contra Hardy, supra note 329, at 850 (suggesting that a source code author

typically has no control over the translation of the resulting object code).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 65 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 413

puter-aided design tool in real-time or whether the creator interacts with
that computer-aided design tool by creating a set of instructions, macros
or data files that are then submitted to the tool. The situation with a
source code program and a compiler is exactly analogous. When using a
compiler, a developer is writing a set of instructions to be submitted to
the compiler to create another work. Whether those instructions are
passed to the compiler in a file or as real-time input should make no
difference to the copyright status of the resulting object code program.

Assuming the creative effort does not need to occur at the instant a
compiler is invoked, it would appear that a programmer exercises the
creative effort necessary to produce copyrightable computer-generated
object code. Indeed, the manner in which programs are tested and
debugged further supports this proposition. Once a source code program
has been written, it is compiled and linked to create an object code pro-
gram. The object code program is then tested by operating it on a com-
puter and observing its behavior. If the actual behavior does not match
the desired behavior, then the program is debugged and modified until
the desired behavior is actually observed in the object code program
while it is operating on a computer. This iterative process provides em-
pirical evidence that a significant portion of a programmer’s creativity is
directed towards and manifested in the object code program. The man-
ner in which particularly difficult defects are resolved provides further
evidence to support this proposition. When a defect is particularly diffi-
cult, a programmer will often examine the operation of an object code
program in minute detail using a run-time debugger to set breakpoints
and single step through object code instructions.

Accordingly, the creation of a commercial program is an iterative
process, where a programmer alternately writes source code and tests
object code to verify that his or her program works as intended and to
ensure that his or her expression and creativity are properly manifested
in the resulting object code program. If compilation was simply a
mechanical translation, then this type of activity would not be necessary.
The programmer would simply write his or her program so it was com-
prehensible to other programmers and the process would be complete.
Since computer programs “behave,” compilation and subsequent testing
of the object code version of a program are critical steps in the creation of
a final product. Previous derivative works analyses of object code pro-
grams have not taken into account the way in which computer programs
are actually developed. As a result, the compilation process has been
viewed as a formality that occurs once a computer program has been de-
veloped in source code. However, when the entire software development
cycle is considered, it becomes apparent that compilation and testing are
an integral part of the creative process for developing a computer pro-
gram. Accordingly, when the entire development process is considered,

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 66 28-SEP-10 10:21

414 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

the argument that none of a computer programmer’s creativity is embod-
ied in an object code program is simply not persuasive.

Having said the foregoing, the law currently treats the object and
source code forms (and presumably all other forms) of a computer pro-
gram as different representations of the same work.345 This view is
probably incorrect since a technical analysis of compilation shows that at
least some intermediate forms of a computer program can be derivative
works of called libraries while other forms almost certainly are not. This
suggests that the various forms of computer programs are not equivalent
and hence cannot be simply different representations of the same work.
If all of the forms of a computer program are simply different representa-
tions of the same work, then if one representation of a program is a de-
rivative work of a linked library, an individual could presumably argue
that distribution of any representation of the program should engage the
GPL. The rationale being that the various representations of a work are
not treated as separate works and if one of those representations en-
gages the viral provisions of the GPL, then presumably, all of the repre-
sentations of that work should engage the viral provisions of the GPL.
However, this proposition seems overly broad since the various forms of
a computer program clearly have different substantive content and are
not really equivalent representations of the same work. A more appro-
priate approach would be to deal with the different forms of a computer
program as separate works with their exact treatment and relationship
to each other to be determined by their specific content. Accordingly, a
GPL analysis should focus only on those forms of a computer program
that are distributed – most often the source code and object code. There-
fore, the fact that an intermediate form of an object code program is al-
most certainly a derivative work of a linked GPL-licensed library should
not make any difference. The test to be applied to any object or source
code distribution should be whether that form of the program contains a
substantially similar amount of copyrightable material thereby making
it a derivative or infringing work of a linked library.

If it is subsequently determined that the object code form of a com-
puter program is a derivative work of the source code or any other inter-
mediate form of a program, this change should not affect the analysis
proposed above. According to Professor Jay Dratler, whether a subse-
quent work is a derivative work of an earlier work will always depend on
whether there has been an inclusion of a substantially similar amount of
copyrightable material from the earlier work.346 Accordingly, if a third

345. See Strasser, supra note 329. See also Compendium II: Copyright Office Practices,
supra note 336.

346. JAY DRATLER, INTELLECTUAL PROPERTY LAW: COMMERCIAL, CREATIVE, AND INDUS-

TRIAL PROPERTY, §6.01[2] (1998).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 67 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 415

work is a derivative work of a second work and the second work is a
derivative work of a first work, the third work will only be a derivative
work of the first work if it is substantially similar to the first work. Pro-
fessor Dratler further observed that the number of cases in which such a
third work will not be a derivative work of the first work is likely to be
low.347 Therefore, assuming a final object code version of a computer
program is a derivative work of the source code file or the intermediate
file, and the source code file or intermediate file is a derivative work of a
dynamically linked GPL-licensed library, the question of whether the ob-
ject code program is also a derivative work of the GPL-licensed library
will ultimately be resolved by determining whether the object code pro-
gram contains enough copyrightable material from that GPL-licensed li-
brary to make it substantially similar. This is the same test as in the
case where the object code program is a separate work from all the other
versions of the computer program.

Thus, the question of whether the dynamic linking of a commercial
program to a GPL-licensed library makes that program a derivative
work comes down to an analysis of whether the resulting object code pro-
gram is substantially similar to the linked library. As discussed in Sec-
tion II.C, a dynamically linked object program will contain the various
symbol names referenced from any linked GPL-licensed libraries. The
object code in the dynamically linked program may also contain non-lit-
eral elements copied from any linked libraries. Critically, however, a dy-
namically linked executable object program will not contain any object
code from the libraries to which it has been linked. Therefore, the analy-
sis of whether an object code program is a derivative work of a GPL-
licensed library to which it has been linked ultimately becomes a fact-
dependent analysis of whether the symbol names and any non-literal ele-
ments that may have been copied are sufficient to meet the substantial
similarity test. This is a somewhat unsatisfying result, since it means,
absent other limiting doctrines, every use of a GPL-licensed library must
be analyzed in detail and, specifically, the nature of the interaction with
that library must be very well understood before a determination can be
made about the potential viral effects of GPL-licensed software
use.348From the perspective of a commercial software vendor the answer
is even more unsatisfying since the substantial similarity test does not
provide a bright-line answer and, accordingly, there will almost always
be some level of uncertainty about each use of GPL-licensed software.
Therefore, each time a commercial software vendor decides to dynami-

347. Id. at §6.01[2] 6-12.2-12.2.3. As will be discussed later, for computer programs,
and particularly for programs that are dynamically linked or that communicate through
inter-process communication, this type of situation may not necessarily be that uncommon.

348. 17 U.S.C. §102(b) (1990). Later it will be argued that the limiting provisions of 17
U.S.C. §102(b) should apply to dynamic linking.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 68 28-SEP-10 10:21

416 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

cally link a commercial program to a GPL-licensed library, that vendor
will be taking a non-zero risk of compromising the value of the commer-
cial program. However, as will be discussed later, there are some situa-
tions where the GPL-related risk may be significantly less than the
typical case.

2. Copyright Protection for Technical Interfaces

The various names, parameters and data structures used to call
functions and procedures in a dynamically linkable GPL-licensed library
constitute a technical interface. At a high level, a technical interface is a
set of words and rules that must be used and observed by someone who
wants to interact with a given program.349 Technical interfaces perform
a similar function to the desktop and file folder interface paradigms used
in various popular operating systems. However, instead of facilitating
interactions between humans and computers, technical interfaces facili-
tate interactions between computer programs/processes and other com-
puter programs/processes. Much of the early jurisprudence on interface-
related issues was developed in the context of computer-human inter-
faces.350 Even now, the number and significance of cases dealing with
computer-human interfaces significantly outweighs those dealing with
technical interfaces. The irony is that there are significantly more com-
puter-to-computer and program-to-program interfaces than there are
computer-human interfaces. However, the number of cases involving
technical interfaces seems to be increasing. Additionally, a number of
important principles developed in the context of graphical user interfaces
are also highly relevant for technical interfaces.

349. Zimmerman, supra note 306, at 10.
350. See generally Lotus Dev. Corp. v. Borland Int’l., Inc. (Lotus V), 49 F.3d 807 (1st Cir.

1995), aff’d by an equally divided court, 516 U.S. 233 (1996) (per curiam); Apple Computer,
Inc. v. Microsoft Corp. (Apple Computer), 35 F.3d 1435 (9th Cir. 1994); Autoskill, Inc. v.
Nat’l Educ. Support Sys., Inc., 994 F.2d 1476 (10th Cir. 1993); Brown Bag Software v. Sy-
mantec Corp., 960 F.2d 1465 (9th Cir. 1992); Ashton-Tate Corp. v. Ross, 916 F.2d 516 (9th
Cir. 1990); Lotus Dev. Corp. v. Borland Int’l Inc. (Lotus IV), 831 F.Supp. 223 (D. Mass.
1993); Lotus Dev. Corp. v. Borland Int’l, Inc. (Lotus III), 831 F.Supp. 202 (D. Mass. 1993);
Apple Computer, Inc. v. Microsoft Corp. (Apple Computer VI), 821 F.Supp. 616 (N.D. Cal.
1993); Lotus Dev. Corp. v. Borland Int’l, Inc. (Lotus II), 799 F.Supp. 203 (D. Mass. 1992);
Lotus Dev. Corp. v. Borland Int’l, Inc. (Lotus I), 788 F.Supp. 78 (D. Mass. 1992); Apple
Computer, Inc. v. Microsoft Corp. (Apple Computer V), 799 F.Supp. 1006 (N.D. Cal. 1992);
Apple Computer, Inc. v. Microsoft Corp. (Apple Computer IV), 779 F.Supp. 133 (N.D. Cal.
1991); Apple Computer, Inc. v. Microsoft Corp. (Apple Computer III), 759 F.Supp. 1444
(N.D. Cal. 1991); Lotus Dev. Corp. v. Paperback Software Int’l, 740 F.Supp. 37 (D. Mass.
1990); Apple Computer, Inc. v. Microsoft Corp. (Apple Computer II), 717 F.Supp. 1428 (N.D.
Cal. 1989); Apple Computer, Inc. v. Microsoft Corp. (Apple Computer I), 709 F.Supp. 925
(N.D. Cal. 1989); Mfr. Tech., Inc. v. Cams. Inc., 706 F.Supp. 984 (D. Conn. 1989); Digital
Commc’n Assocs., Inc., v. Softklone Distrib. Corp., 659 F.Supp. 449 (N.D. Ga. 1987);
Broderbund Software, Inc. v. Unison World, Inc., 648 F.Supp. 1127 (N.D. Cal. 1986).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 69 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 417

3. Cases Relevant to Copyright Protection for Technical Interfaces

The current case law relating to technical interfaces is mixed.351 In
the next section, the most significant cases relating to copyright protec-
tion for technical interfaces will be analyzed and critiqued. The princi-
ples derived from these cases will then be applied to dynamic linking of
GPL-licensed libraries.

i. Lotus

Perhaps the most significant case to consider when attempting to
determine the scope of protection for technical interfaces is a case that
does not appear to deal with technical interfaces at all. This is the fa-
mous case Lotus Development Corp. v. Borland International, Inc. that
dealt with the copyrightability of the Lotus 1-2-3 command names and
command menu hierarchy.352

Lotus 1-2-3 is a graphical spreadsheet program that allows users to
perform various accounting functions on a computer.353 Users are able
to control the program and manipulate accounting information using a
large number of mnemonic menu commands such as “Copy”, “Print” and
“Quit.”354 The Lotus program also allows users to write programs called
“macros” consisting of Lotus 1-2-3 commands.355 Lotus 1-2-3 can read
macro files and execute the commands contained within the macro thus
saving the user from having to type them.356 Lotus 1-2-3 was very com-
mercially successful and the menu command hierarchy was character-
ized as the de facto standard for electronic spreadsheet commands.357

A number of years after the release of Lotus 1-2-3, Borland released
competing electronic spreadsheet programs called Quattro and Quattro
Pro.358 Evidence in the case showed that Borland had done nearly three
years of development work on Quattro and Quattro Pro, and Borland’s
objective had been to create programs that were far superior to those
currently on the market.359 However, each of the Borland products con-
tained “virtually identical” copies of the entire Lotus 1-2-3 command hi-

351. See, Zimmerman, supra note 306, at 10.
352. Lotus Dev. Corp. v. Borland Int’l., Inc., (Lotus V), 49 F.3d 807, 809 (1st Cir. 1995),

aff’d by an equally divided court, 516 U.S. 233 (1996) (per curiam).
353. Id.
354. Id. The version of Lotus 1-2-3 considered by the court contained 469 commands

arranged into more than 50 menus and submenus. Id.
355. Id.
356. Id. The process of reading and executing a macro is also known as “invoking” that

macro.
357. Lotus V, 49 F.3d at 821 (Boudin J., concurring).
358. Lotus V, 49 F.3d at 810.
359. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 70 28-SEP-10 10:21

418 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

erarchy.360 Borland included the Lotus command hierarchy in its
products to make them compatible with Lotus 1-2-3, so users who were
already familiar with Lotus 1-2-3 could more easily transition to the Bor-
land products.361 Additionally, the Quattro and Quattro Pro compatibil-
ity features were designed to allow Lotus users to continue to use macros
they had written for Lotus 1-2-3. Compatibly was achieved in two
ways.362 The first way was through the provision of an alternative user
interface, known as the “Lotus Emulation Interface.”363 While the Bor-
land products had their own native user interfaces, that were different
from the Lotus 1-2-3 user interface, the Borland products also allowed
users to switch to the Lotus Emulation Interface, which supported all of
the Lotus 1-2-3 commands.364 Except for minor differences, when run-
ning in Lotus emulation mode, Borland’s products looked quite similar to
the Lotus 1-2-3 graphical user interface.365 The second way in which
compatibility was provided was through the “Key Reader” feature in the
Quattro Pro product.366 The Key Reader allowed the Quattro Pro prod-
uct to read and execute Lotus 1-2-3 macros.367 Borland developed these
compatibility features without copying any of the underlying Lotus
source code – only the words and structure of the Lotus command hierar-
chy was copied.368 However, this copying was virtually complete.369

At trial, the district court found in favor of Lotus, and held that Bor-
land’s copying of the Lotus 1-2-3 menu commands and menu command
hierarchy was an infringement of Lotus’ copyright in that product.370

The district court stated that “the ‘menu commands’ and ‘menu struc-
ture’ contain expressive aspects separable from the functions of the
‘menu commands’ and ‘menu structure.’”371 However, the First Circuit
Court of Appeals did not agree with the district courts’ approach or con-
clusions, and overruled that decision. After dealing with a number of
preliminary matters,372 the First Circuit focused its analysis on whether

360. Id.
361. Id.
362. Id.
363. Id.
364. Lotus V, 49 F.3d at 810.
365. Id. at 810.
366. Id. at 811.
367. Id. 811.
368. Id. at 810.
369. Id. at 810.
370. Lotus Dev. Corp. v. Borland Int’l, Inc., (Lotus II), 799 F.Supp. 203, 205 (D. Mass.

1992).
371. Id. at 223.
372. Lotus V, 48 F.3d at 814 (stating that the case was not identical to Baker v. Selden,

101 U.S. 99 (1879)). Id. at 814-15 (stating that Computer Assoc. Int’l, Inc. v. Altai, Inc. 982
F.2d 693 (2nd Cir. 1992) was not particularly helpful as an analytic framework because
that case dealt with non-literal copying, while Lotus dealt with deliberate literal copying).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 71 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 419

the Lotus command hierarchy was a method of operation.
Section 102(b) of the Copyright Act provides that “[i]n no case does

copyright protection for an original work of authorship extend to any
idea, procedure, process, system, method of operation, concept, principle,
or discovery, regardless of the form in which it is described, explained,
illustrated or embodied in such work.”373 The First Circuit interpreted
the term “method of operation” as used in §102(b) to refer to “the means
by which a person operates something, whether it be a car, a food proces-
sor, or a computer.”374 The court also observed that the Lotus command
hierarchy provided the means by which users of Lotus 1-2-3 control and
operate the program.375 Further, the First Circuit observed that users
would not be able to access and control or make use of the Lotus 1-2-3
functional capabilities without the menu command hierarchy.376 Based
on its understanding of the meaning of the term “method of operation,”
and based on its observations about the Lotus menu command hierarchy,
the First Circuit concluded that the Lotus 1-2-3 menu commands and
menu command hierarchy were not entitled to copyright protection.377

Accordingly, the court found that Borland’s use of the Lotus 1-2-3 menu
commands and menu command hierarchy was not copyright
infringement.378

The First Circuit also explained its reasons for rejecting the district
court’s approach. As will be discussed later, the reasons the First Circuit
gave for rejecting the district court approach are very applicable to dy-
namic linking. The First Circuit stated that it accepted the district
court’s premise that certain “expressive choices” had been made in choos-
ing and arranging the Lotus 1-2-3 commands.379 The court also said it
did not believe that methods of operation were limited to abstractions.380

In particular, the court found that “[i]f specific words are essential to
operating something, then they are part of a ‘method of operation’ and,
as such, are unprotectable.”381 The First Circuit further explained that:

The fact that Lotus developers could have designed the Lotus menu
command hierarchy differently is immaterial to the question of whether
it is a “method of operation.” In other words, our initial inquiry is not
whether the Lotus menu command hierarchy incorporates any expres-
sion. Rather, our initial inquiry is whether the Lotus menu command
hierarchy is a “method of operation.” Concluding, as we do, that users

373. 17 U.S.C. §102(b) (2010).
374. Lotus V, 48 F.3d at 815.
375. Id.
376. Id.
377. Id. at 818.
378. Id. at 819.
379. Id. at 816.
380. Lotus V, 48 F.3d at 816.
381. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 72 28-SEP-10 10:21

420 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

operate Lotus 1-2-3 by using the Lotus menu command hierarchy, and
that the entire Lotus menu command hierarchy is essential to operating
Lotus 1-2-3, we do not inquire further whether that method of operation
could have been designed differently. The “expressive” choices of what
to name the command terms and how to arrange them do not magically
change the uncopyrightable menu command hierarchy into copyright-
able subject matter.382

The court observed that Lotus wrote its menu command hierarchy
“so that people could learn and use it,” and accordingly, it fell within the
prohibition on copyright protection established in Baker v. Selden and
codified in §102(b).383 It should be noted that the First Circuit’s holding
was limited to the menu commands and menu command hierarchy. The
decision did not cover other parts of the Lotus 1-2-3 interface, such as the
various screen displays. The reason for this limitation is that these as-
pects of the Lotus 1-2-3 interface were not at issue by the time the case
reached the First Circuit. However, by extending the court’s reasoning,
it seems reasonable to conclude that these aspects of the Lotus 1-2-3 in-
terface would not have been denied copyright protection because they
would not have been essential to the operation of Lotus 1-2-3.

Since Lotus, a number of other circuit courts have decided to not
follow the First Circuit’s approach.384 These decisions seem to arise
from the perceived harshness of an absolute ban on copyright protection
for the expressive elements of a method of operation. The First Circuit’s
reasoning is certainly justified on a simple reading of the language of
§102(b). However, questions have arisen about whether the First Circuit

382. Id. at 816 (footnote omitted) (emphasis added).
383. Id. at 817.
384. Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366, 1372 (10th Cir. 1997) (“[W]e decline to

adopt the Lotus court’s approach to section 102(b), and continue to adhere to our abstrac-
tion-filtration-comparison approach”). Mitek Holdings, Inc. v. Arce Eng’g Co., Inc., 89 F.3d
1548, 1557 (11th Cir. 1996) (“Unlike the Lotus court, we need not decide today whether a
main menu and submenu command tree structure is uncopyrightable as a matter of law”).
Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1547 (11th Cir. 1996). Without referring to
Lotus V on this point, the Eleventh Circuit said:

This circuit has yet to address whether interface specifications, as a matter of law,
are not entitled to copyright protection. In its briefs, PAC argues that Bateman’s
interface commands are legally uncopyrightable and, thus, PAC was not obligated
to avoid copying them by rewriting its application program. . . . To the extent that
[PAC] was making the former argument, we reject it. It is an incorrect statement
of the law that interface specifications are not copyrightable as a matter of law.
(footnotes omitted).

In Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1547, n.31 (11th Cir. 1996), the Eleventh
Circuit further added:

We need not decide whether PAC is correct in its assertion that, given the particu-
lar facts of this case, it was not obliged to rewrite its application program to avoid
copying Bateman’s interface specifications. PAC, however, is incorrect in arguing
that this rewriting was not required because Bateman’s interface specifications
are not entitled to copyright protection as a matter of law.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 73 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 421

approach implements the legislative intent of §102(b). An examination
of Baker v. Selden, which enunciated many of the principles subse-
quently codified in §102(b), shows that the United States Supreme Court
did not proscribe copyright protection of all expression within a method
of operation, but instead, proscribed copyright protection for expression
that is necessary for the use of a method of operation.385 Accordingly,
the First Circuit’s finding that the menu commands and menu command
hierarchy are not protected under copyright appears to give precise effect
to this narrower interpretation of §102(b) and the legislative intent re-
lated to that section. In particular, the court justified the Lotus result:

[O]ur inquiry is not whether the Lotus menu command hierarchy
incorporates any expression. Rather, our initial inquiry is whether the
Lotus menu command hierarchy is a “method of operation.” Conclud-
ing, as we do, that users operate Lotus 1-2-3 by using the Lotus menu
command hierarchy, and that the entire Lotus menu command hierar-
chy is essential to operating Lotus 1-2-3, we do not inquire further
whether that method of operation could have been designed differently.
The “expressive” choices of what to name the command terms and how
to arrange them do not magically change the uncopyrightable menu
command hierarchy into copyrightable subject matter.386

The Lotus holding will not generally extend to most arrangements of
icons or other elements on a screen display because those arrangements
are generally not “essential to operating” a given product. Screen dis-
plays will usually contain expressive choices that should be protected
even under a Lotus-like analysis because those displays are not essential
to the operation of the product.387

385. In Baker v. Selden, 101 U.S. 99, 103 (1879), the Court said:
The copyright of a work on mathematical science cannot give to the author an
exclusive right to the methods of operation which he propounds, or to the diagrams
which he employs to explain them, so as to prevent an engineer from using them
whenever occasion requires. The very object of publishing a book on science or the
useful arts is to communicate to the world the useful knowledge which it contains.
But this object would be frustrated if the knowledge could not be used without
incurring the guilt of piracy of the book. And where the art it teaches cannot be
used without employing the methods and diagrams used to illustrate the book, or
such as are similar to them, such methods and diagrams are to be considered as
necessary incidents to the art, and given therewith to the public; not given for the
purpose of publication in other works explanatory of the art, but for the purpose of
practical application.
Of course, these observations are not intended to apply to ornamental designs, or
pictorial illustrations addressed to the taste. (emphasis added).

386. Lotus Dev. Corp. v. Borland Int’l, Inc. (Lotus V) 49 F.3d 807, 816 (1st Cir. 1995),
aff’d by an equally divided court, 516 U.S. 233 (1996) (per curiam) (footnote omitted) (em-
phasis added).

387. This approach will also produce reasonable results when applied to other contexts
such as, operating systems that are based on desktop metaphors. The visual screen dis-
plays of such operating systems, while part of the method for operating that program,
should not be denied copyright protection simply because they are used in operating that

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 74 28-SEP-10 10:21

422 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

The First Circuit went on to consider the Lotus 1-2-3 macros, and
similarly concluded that those macros were an unprotectable method of
operation. This part of the Lotus analysis is particularly applicable to
dynamic linking since Lotus 1-2-3 macros are created in much the same
way as computer programs. Additionally, when macros are used, they
rely on a technical interface between the macro and the application. Ac-
cordingly, the First Circuit’s finding that the Lotus 1-2-3 macros are a
method of operation is significant because dynamic linking relies on a
technical interface between a calling program and a linked library. In its
analysis of the macro capabilities in the Lotus and Borland products, the
First Circuit said:

We also note that in most contexts, there is no need to “build” upon
other people’s expression, for the ideas conveyed by that expression can
be conveyed by someone else without copying the first author’s expres-
sion. In the context of methods of operation, however, “building” re-
quires the use of the precise method of operation already employed;
otherwise building would require dismantling, too. Original developers
are not the only people entitled to build on methods of operation they
create; anyone can.388

This passage articulates the reason why the particular words and
formats of a GPL-licensed dynamically linkable library API are unlikely
to be granted copyright protection under a Lotus-like approach. If those
mnemonics and formats are not available for unencumbered use, then
the functionality in the underlying library cannot be operated. Indeed,
the reason for creating an API is to allow other programmers to access
and use the underlying functionality. It is therefore difficult to envision
any strong arguments for the proposition that a GPL-licensed library’s
API is not a method of operation for the underlying library.

Therefore, the rationale for finding that the Lotus 1-2-3 macros are a
method of operation also seems to be applicable to dynamic linking, thus
making Lotus very relevant in determining the copyright treatment of
dynamic linking. However, while macros are very program-like and

program. To the extent expressive choices have been made, and to the extent that expres-
sion is not filtered for other reasons, these choices should be granted protection because
their use is not required to use the methods of operation for a desktop-metaphor based
operating system. However, to the extent the same operating system provides services to
application programs, or otherwise makes application programming interfaces, or, other
technical interfaces available so that capabilities of the operating system can be used by
other programs, those application programming interfaces, or other technical interfaces,
should be denied copyright protection under the Lotus approach because the specific words,
data structures, and formats used in these methods of operation are essential to their use.
If such words, data structures and formatting were protected, the effect would be to deny
access to and use of those methods of operation- – conflicting with the explicit provisions of
§102(b) and the holding in Baker v. Selden 101 U.S. 99 (1879).

388. Lotus V, 49 F.3d at 818 (footnotes omitted).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 75 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 423

while there is a technical interface between a macro and the application
program that executes that macro, the analogy is not identical. The
First Circuit’s specific reasons used to justify its finding that the Lotus 1-
2-3 macros were a method of operation are not as clearly stated as those
for the menu commands and menu command hierarchy. Much of the ra-
tionale seems to be based on compatibility requirements.389 However,
computer program compatibility does not justify a denial of copyright
protection.390

The need for a subsequent program to establish compatibility with a
pre-existing program is not a reason for denying copyright. In analyzing
the Lotus 1-2-3 macros, the First Circuit should have applied the same
two-step analysis it used for the menu commands and hierarchy. Had
that approach been used, the court would have assessed whether the
subject matter at issue is the means by which something is operated.
For the macro command facility, this requirement appears to have been
met since the macro reader provides an alternative means by which com-
mands can be submitted to Lotus 1-2-3 and processed. Once the macro
reader facility is determined to be a method of operation, the expression
necessary to use it will not be protected. In this case, this material
would probably have largely overlapped with the material in the macro
commands and macro command hierarchy.

The First Circuit completed its analysis by observing that if someone
were to write a macro based on the Lotus 1-2-3 menu commands, the
district court’s ruling would prevent that person from using the macro to
perform the same operations with another program.391 The court fur-
ther observed that if such a person wanted to use the macro with another
program, that person would have to re-write the macro for the other pro-

389. In particular, the court in Lotus V observed:
That the Lotus menu command hierarchy is a “method of operation” becomes
clearer when one considers program compatibility. Under Lotus’s theory, if a user
uses several different programs, he or she must learn how to perform the same
operation in a different way for each program used. For example, if the user
wanted the computer to print material, then the user would have to learn not just
one method of operating the computer such that it prints, but many different
methods. We find this absurd. Lotus V, 49 F.3d at 817-18.

390. The purpose of U.S. copyright law is to promote the progress of science and the
useful arts. The grant of copyright protection is a means to achieve that end by providing
an incentive for authors to create works. This grant, however, is not simply meant to re-
ward authors. Compatibility tends to promote progress of sciences and the useful arts;
therefore it is a desirable result. Therefore, compatibility, along with a number of other
factors that promote the sciences and the useful arts, are considerations that will tend to
influence how the Copyright Act is construed and applied. However, compatibility is not a
statutorily mandated reason for denying copyright protection; although it may be a consid-
eration in a fair use argument.

391. Lotus V, 49 F.3d at 818.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 76 28-SEP-10 10:21

424 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

gram.392 The First Circuit stated that forcing a user to cause a computer
to perform the same operation in a different way ignores the fact that
methods of operation are not copyrightable.393 This reasoning is prob-
lematic in two ways. First, it is broader in scope than the rationale used
earlier in the decision, which only denied protection to those aspects of a
method of operation necessary for its use. Second, user convenience and
compatibility are consequences of a finding that the Lotus 1-2-3 menu
commands and menu command hierarchy are a method of operation, not
a reason for finding that the Lotus 1-2-3 menu commands and menu
command hierarchy are a method of operation. Finally, the First Circuit
concluded that “[a]s the Lotus menu command hierarchy serves as the
basis for Lotus 1-2-3 macros, the Lotus menu command hierarchy is a
‘method of operation.’”394 This statement is somewhat puzzling, and it
appears that the court meant to say that since the Lotus menu command
hierarchy serves as the basis for the Lotus 1-2-3 macros, the Lotus 1-2-3
macros are a method of operation. In any event, the overall holding of
the case makes it clear that Borland was not liable for copying the menu
commands, the menu command hierarchy, or the macro reading feature.
Thus, this statement cannot reasonably mean anything except that the
macro facility is a method of operation. Therefore, there are actually two
methods of operation for the Lotus 1-2-3 product: one consisting of the
menu commands and menu command hierarchy, which are typed or se-
lected through a graphical user interface, and the other consisting of the
macro reading facility and macro commands, which are typed into a com-
puter file and then read and executed by using the macro reading
feature.

Even though the settings are not identical, it appears that the First
Circuit’s rationale in Lotus can be reasonably applied to dynamic linking.
Unlike the situation in Lotus, an end user will not engage a dynamically
linkable library through a user interface. Instead, a dynamically link-
able library will be called from an executing program through the li-
brary’s API. According to Lotus, the term “method of operation” refers to
“the means by which a person operates something, whether it be a car, a
food processor, or a computer.”395 At first glance, it appears that the
reference to “person” might require some kind of direct human participa-
tion. However, the requirement for direct human participation was not
an impediment to the finding that the Lotus 1-2-3 macro reading facility
was a method of operation.396 Later in the Lotus opinion, the First Cir-

392. Id.
393. Id.
394. Id.
395. Id.
396. It could also be argued that the user who selects the macro reading facility supplies

the necessary human activity. Assuming there is a requirement for human activity to qual-

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 77 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 425

cuit stated. “[i]f specific words are essential to operating something, then
they are part of a ‘method of operation’ and, as such are unprotectable.
This is so whether they must be highlighted, typed in, or even spoken, as
computer programs no doubt will soon be controlled by spoken words.”397

While the First Circuit gives examples that all involve human participa-
tion, the test itself does not contain any such limitation, and it is broad
enough to include one computer program invoking another computer
program. Additionally, other circuit courts have shown no inclination to
restrict methods of operation to circumstances involving direct human
participation.398 Leaving aside the issue of direct human participation,
there does not appear to be anything else in the First Circuit’s test that
would prevent a GPL-licensed API from qualifying as a method of opera-
tion. In particular, the only way to invoke a dynamically linkable library
is by embedding its API calls in an application program that subse-
quently links to that GPL-licensed library in an operating computer.
Furthermore, the specific API names, parameter lists and data struc-
tures are essential to the dynamic linking process. If the precise seman-
tics specified by the API are not followed, a linking application program
will not compile or it will not function properly. Therefore, based on
these characteristics, it would appear that invocation of a GPL-licensed
dynamically linkable library through its API should qualify as a method
of operation.

ii. Bateman

About a year after the decision in Lotus v. Borland, another circuit
court had an opportunity to consider a fact scenario that is quite similar
to dynamic linking and inter-process communication. In Bateman v.
Mnemonics, Inc., the Eleventh Circuit Court of Appeals considered the

ify as a method of operation, it is also possible that invocation of a program could poten-
tially supply the necessary human activity. Additionally, the actions of a programmer in
adding an API call to a program could be sufficient to meet a requirement for human activ-
ity. These few examples demonstrate that the imposition of a human activity requirement
does not result in an easy or principled way for identifying methods of operation, and sub-
sequent cases have not tried to impose such a requirement. Accordingly, it seems unlikely
that the First Circuit Court of Appeals intended human participation to be a prerequisite.
See, Gates Rubber Co. v. Bando Chemical Indus., Ltd., 9 F.3d 823, 836 n.13 (10th Cir. 1993)
(characterizing procedures, processes, systems and methods of operation as “methods for
achieving a particular result”).

397. Lotus V, 49 F.3d at 816.
398. See e.g., Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366, 1368 (10th Cir. 1997) (describing

the district court’s finding that Mitel’s command codes comprised the method by which a
long distance carrier matches the call controller’s functions, the carrier’s technical de-
mands, and the telephone customers’ choices, and then concluding that although an ele-
ment of a work may be characterized as a method of operation, that element may
nonetheless contain expression that is eligible for copyright protection).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 78 28-SEP-10 10:21

426 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

scope of copyright protection for various system calls required to commu-
nicate with a single board computer operating system (“SBCOS”).399

The defendant had been a licensee of the plaintiff’s SBCOS, and had
written a number of application programs that interacted with that oper-
ating system.400 Eventually, the business relationship between the
plaintiff and the defendant deteriorated and the license agreement for
the SBCOS was terminated.401 After termination of the license, the de-
fendant decided to develop its own operating system that would inter-
operate with the application programs it had already developed for the
SBCOS.402 To develop its own operation system, the defendant dissem-
bled the SBCOS to identify those parts of the operating system necessary
for interoperation with the existing application programs.403

The primary issue on appeal involved certain jury instructions given
by the district court.404 Specifically, the defendant contended that the
district court had erred when it instructed the jury to filter out only non-
literal similarities when performing the second step of the abstraction-
filtration-comparison test.405 The defendant also claimed that the dis-
trict court erred when it did not instruct the jury on the legal conse-
quences of finding that certain literal instances of copying by the
defendant were dictated by compatibility and interoperability require-
ments.406 The Eleventh Circuit concluded that the jury had not been
properly instructed on either issue, and remanded the case back to the
district court for re-trial.407

In considering the second alleged error, the Eleventh Circuit made
certain comments that are potentially relevant to the scope of protection
for technical interfaces. In particular, the court examined whether to
deny interface specifications copyright protection as a matter of law.408

In this case, the reference to interface specifications is really a reference
to the API that the SBCOS made available for use by application pro-
grams intended to run on that operating system to use. The Eleventh
Circuit concluded that it is incorrect to say that interface specifications
are not copyrightable as a matter of law.409 In reaching this conclusion,
the court did not consider the First Circuit’s decision in Lotus v. Borland,
despite the fact that application of the First Circuit’s reasoning to this

399. Bateman v. Mnemonics, Inc., 79 F.3d 1532 (11th Cir. 1996).
400. Id. at 1537.
401. Id. at 1539.
402. Id.
403. Id.
404. Id. at 1540.
405. Bateman, 79 F.3d at 1543.
406. Id. at 1546.
407. Id. at 1550.
408. Id. at 1547.
409. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 79 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 427

case could have led to a different conclusion reached by the Eleventh
Circuit.

The technical interface in Batemen consisted of various system calls
made available by the SBCOS for use by application programs request-
ing services from the SBCOS.410 These system calls were the means by
which application programs used functionality provided by the
SBCOS.411 Furthermore, the specific words of those system calls, such
as the names of those calls and the parameter lists and data structures
used by those calls, were required to allow application programs to use
the capabilities provided by the SBCOS. Therefore, pursuant to the cri-
teria established in Lotus, these interface specification, or system calls,
should qualify as a method of operation. According to Lotus, once a court
finds that certain subject matter is a method of operation, it no longer
matters whether a developer made expressive choices because, under
§102(b), as a matter of law, the expression necessary for the use of that
method of operation cannot be protected.412 However, even under Lotus,
the statement that an interface specification in its entirety is not copy-
rightable as a matter of law is not true since there may be aspects of an
interface specification that are not necessary for its use. Generally, how-
ever, there will be significantly less non-essential material in a technical
interface than in a computer-human interface. Therefore, while the
Eleventh Circuit in Bateman was correct in stating that not all interface
specifications are denied copyright protection as a matter of law, the
Eleventh Circuit appears to have failed to consider whether this particu-
lar specification might be one for which copyright protection might be

410. Id. at 1537.
411. The description of operating systems and application programs in Computer Assoc.

Int’l, Inc. v. Altai, Inc., 775 F.Supp. 544, 549-50 (E.D.N.Y. 1991) illustrates this
relationship:

Operating systems are the programs that manage the resources of the computer
and allocate those resources to other programs that need them. For example, op-
erating system software might perform, among others, these functions:
- channeling information entered at a keyboard to the proper application program;
- sending information from an application program to a display screen;
- providing blocks of memory to an application program that requires them; and
- allocating processing time among several application programs running on the
computer at the same time.
Operating system software interacts with whatever other programs are being used
or “executed” by the computer, providing computer resources such as processors,
memory, disk space, printers, tape drives, etc. for the other programs that need
them through what are often referred to as “system calls”. For this interaction to
occur properly, the other programs must be compatible with the operating system
software in use on the computer, i.e., they must be able to exchange information
precisely and accurately with the operating system to interact with those com-
puter resources. Computer Assoc. Int’l, Inc. v. Altai, Inc., 775 F. Supp. 544,
(E.D.N.Y. 1991) (emphasis added).

412. Lotus Dev. Corp. v. Borland Int’l, Inc. (Lotus V), 49 F.3d 807, 816-19 (1st Cir.
1995), aff’d by an equally divided court, 516 U.S. 233 (1996) (per curiam).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 80 28-SEP-10 10:21

428 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

denied as a matter of law. Although the Bateman decision did refer to
Lotus on other matters, the Eleventh Circuit either did not notice that its
treatment of methods of operation conflicted with Lotus, or it chose not to
comment on that conflict.413 In any event, the court’s failure to consider
the SBCOS interface more closely, or to at least provide a rationale for
not considering the interface more closely, makes it difficult to assess the
merits of the Bateman decision.

iii. Mitel

 A little over two years after the First Circuit Court of Appeals decided
Lotus v. Borland, the Tenth Circuit Court of Appeals had an opportunity
to consider the scope of copyright protection for technical interfaces.414

In Mitel, Inc. v. Iqtel, Inc., the Tenth Circuit concluded that copyright
protection should not be extended to the technical interface at issue in
that case.415 However, the Tenth Circuit explicitly rejected the approach
taken by the First Circuit in Lotus v. Borland and established a much
different scope of protection for technical interfaces.416

Mitel manufactured and sold a product known as a call controller.417

A call controller is a specialized piece of computer hardware that auto-
mates the selection of long distance carriers and also automates the se-
lection of various optional telephone features such as speed dial.418 The
Mitel call controller was activated and manipulated using an instruction
set consisting of over sixty numeric command codes.419 Each command
code consisted of a four-digit sequence selected from those digits gener-
ally available on a telephone keypad, such as zero through nine, * and
#.420 The various digits within a command were used to specify informa-
tion, such as the function to be executed and the telephone line on which
that function was to be executed. Other digits were used to specify the
value of certain parameters that might be applicable to a particular com-
mand.421 For example, in the case of some commands, a “4” might re-
present a value of 1200 baud; in other cases a “4” might represent a

413. Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1542-45 (11th Cir. 1996).
414. Zimmerman, supra note 306, at 12. Although the Mitel interface bears some re-

semblance to a user interface when being installed or updated by technicians, in operation
it functions as a technical interface. Once installed, the call controller is automatically
invoked by a telephone company’s networks and systems with no human interaction or
intervention.

415. Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366, 1375 (10th Cir. 1997).
416. Id. at 1371-73.
417. Id. at 1368.
418. Id.
419. Id.
420. Id.
421. Mitel, 124 F.3d at 1369.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 81 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 429

value of forty seconds.422

Iqtel was a subsequent entrant into the market for call control-
lers.423 Iqtel designed its own call controller with its own set of com-
mand codes.424 While the Iqtel and Mitel call controllers performed
many of the same functions, many parts of the respective command sets
were different; however, for the parts of the command sets that repre-
sented parameter values, Iqtel selected all of the same ranges as
Mitel.425 At the time Iqtel entered the call controller market, the Mitel
product dominated the market.426 Because of this dominance, Iqtel did
not believe their call controller would be successful unless it was compat-
ible with the Mitel product.427 Specifically, Iqtel did not believe that
technicians who installed call controllers would be willing to learn Iqtel’s
new command set in addition to the Mitel command set.428 Accordingly,
Iqtel designed their product to accept Mitel commands, which were then
translated into their Iqtel equivalents. The Iqtel controller then exe-
cuted these equivalent commands.429 The Iqtel product proved to be
highly competitive with the Mitel product and, as a result, Mitel brought
an action against Iqtel for copyright infringement of the Mitel command
codes.430 Iqtel did not dispute that it had copied Mitel’s command
codes.431

The district court found for Iqtel, holding that the Mitel command
codes were unprotectable because the codes were: (i) a method of opera-
tion under 17 U.S.C. §102(b), (ii) unoriginal under 17 U.S.C. §102(a), and
(iii) dictated by external factors, and hence unprotectable under the
scènes à faire doctrine.432 The Tenth Circuit upheld the district court

422. Id.
423. Id.
424. Id.
425. Id.
426. Id.
427. Mitel, 124 F.3d at 1369.
428. Id.
429. Id.
430. Id. at 1370.
431. Id.
432. Mitel, Inc. v. Iqtel, Inc., 896 F.Supp. 1050, 1055 (D.Colo. 1995) (holding:

The command codes are simply a procedure, process, system, and method of opera-
tion by which the customer can match the call controller functions to the long-
distance carriers’ technical needs and the end user’s choices. Without the com-
mand codes the function would not occur and the result would not be achieved.
Consequently, I conclude and hold that the command codes are not protected com-
ponents of Mitel’s copyrighted material.
I arrive at the same conclusion applying the Gates Rubber abstraction-filtration-
comparison test. I first abstract out the various parts of the computer program
and then filter out those portions of the program which are not copyrightable. If,
arguably, the command codes are considered part of the computer program in the
call controller then their sole purpose is to provide access to the functions availa-

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 82 28-SEP-10 10:21

430 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

decision, but did so for different reasons.433 In particular, the Tenth Cir-
cuit disagreed with the district court and the First Circuit on the use of
the Abstraction-Filtration-Comparison analysis in circumstances involv-
ing deliberate literal copying stating:

We conclude that although an element of a work may be character-
ized as a method of operation, that element may nevertheless contain
expression that is eligible for copyright protection. Section 102(b) does
not extinguish the protection accorded a particular expression of an
idea merely because that expression is embodied in a method of opera-
tion at a higher level of abstraction. Rather, sections 102(a) & (b) inter-
act to secure ideas for public domain and to set apart an author’s
particular expression for further scrutiny to ensure that copyright pro-
tection will “promote the. . .useful Arts.” Our abstraction-filtration-
comparison approach is directed to achieving this balance. Thus, we
decline to adopt the Lotus court’s approach to section 102(b), and con-
tinue to adhere to our abstraction-filtration-comparison approach.434

Using this analytical framework the Tenth Circuit concluded that
the Mitel command codes were largely unoriginal, and to the extent they
contained any original expression, that expression was excluded from
protection under the scènes à faire doctrine.435 The Tenth Circuit
agreed with the district court that Mitel had used such minimal effort
and judgment to select its command codes that they were unoriginal
under §102(a), and furthermore the “random and arbitrary use of num-
bers in the public domain does not evince enough originality to distin-

ble in the call controller. Thus, they provide the means to access or operate the
program contained in the software (internal citations omitted).

433. Mitel, 124 F.3d at 1372.
434. Mitel, 124 F.3d at 1372 (10th Cir. 1997) (internal citations omitted). It is interest-

ing to note that the First Circuit in Lotus V had criticized the approach taken by the Tenth
Circuit in Autoskill, Inc. v. Nat’l Educ. Support Sys., Inc., 994 F.2d 1476 (10th Cir. 1993):

Our holding that methods of operation are not limited to abstractions goes against
Autoskill, 994 F.2d at 1495 n. 23, in which the Tenth Circuit rejected the defen-
dant’s argument that the keying procedure used in a computer program was an
uncopyrightable “procedure” or “method of operation” under § 102(b). The pro-
gram at issue, which was designed to test and train students with reading defi-
ciencies, id. at 1481, required students to select responses to the program’s queries
“by pressing the 1, 2, or 3 keys.” Id. at 1495 n.23. The Tenth Circuit held that, “for
purposes of the preliminary injunction, . . . the record showed that [this] keying
procedure reflected at least a minimal degree of creativity,” as required by Feist
for copyright protection. Id. As an initial matter, we question whether a program-
mer’s decision to have users select a response by pressing the 1, 2, or 3 keys is origi-
nal. More importantly, however, we fail to see how “a student select[ing] a response
by pressing the 1, 2 or 3 keys,” id., can be anything but an unprotectable method of
operation. Lotus Dev. Corp. v. Borland Int’l, Inc. (Lotus V), 49 F.3d 807, 818-19
(1st Cir. 1995) (footnote omitted) (emphasis added).

435. Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366, 1373-76.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 83 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 431

guish authorship.”436 The court found that Mitel’s parameter ranges
(values in the parlance of the case) contained enough intellectual produc-
tion, thought and conception to meet the minimal degree of creativity
necessary to qualify as an original work of authorship.437 However, the
Tenth Circuit went on to find that this non-arbitrary original expression
was unprotectable as scènes à faire because the Mitel values were dic-
tated by external functionality and compatibility requirements of the
computer and telecommunications industries.438

Thus, the Tenth Circuit found that the technical interface in the
Mitel case was unprotectable.439 However, despite the fact that the
same result was reached as in Lotus, the reasoning in Mitel is signifi-
cantly different. Indeed, the approaches are so different it seems virtu-
ally certain that there will be many interfaces for which the two
approaches will produce different results. The First Circuit decided not
to use the Abstraction-Filtration-Comparison test and instead used
§102(b) directly to deny copyright protection for the method of operation
at issue. However, the Tenth Circuit chose to apply the Abstraction-Fil-
tration-Comparison test and stated that §102(b) does not “extinguish the
protection accorded a particular expression of an idea merely because
that expression is embodied in a method of operation at a higher level of
abstraction.”440 These two approaches are starkly different. Lotus pro-
vides a reasonable, bright-line test pursuant to which copyright does not
protect the specific words and other subject matters needed to operate a
device or program.441 Mitel mandates a very fact dependent approach
that may extend copyright protection to essential parts of a method of
operation.442 One of the potential consequences of the Mitel approach is
that protection may be extended to a portion of a technical interface/
method of operation thereby effectively providing de facto protection for
the entire interface/method of operation.443 The First Circuit observed

436. Id. Mitel’s own engineers testified that the command codes contained components
that were arbitrary and “real close to random,” and that there was no evidence that anyone
was trying to “put their mark” on the codes. Id.

437. Id. at 1375.
438. Id. at 1376.
439. Id. at 1376.
440. Id. at 1372.
441. Lotus Dev. Corp. v. Borland Int’l, Inc. (Lotus V), 49 F.3d 807 (1st Cir. 1995), aff’d by

an equally divided court, 516 U.S. 233 (1996) (per curiam).
442. Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366 (10th Cir. 1997).
443. The reason for this is that a commercially viable level of interoperability between

two computer programs is generally going to require support for most, if not all, of a partic-
ular technical interface. Some standards have mandatory and optional portions; therefore,
full support of an interface is not always required. However, a test based on protectable
expression is unlikely to correspond to the division between mandatory and optional sub-
ject matter. The only situation in which a technical interface would potentially be usable
would be the one where those sections that were protected by the owner’s copyright were in

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 84 28-SEP-10 10:21

432 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

that using the Abstraction-Filtration-Comparison test in cases of deliber-
ate literal copying may be misleading because “in instructing courts to
abstract the various levels, it seems to encourage them to find a base
level that includes copyrightable subject matter that, if literally copied,
would make the copier liable for copyright infringement.”444 While this
concern did not manifest itself when the Abstraction-Filtration-Compari-
son test was used in Mitel, it seems likely that the application of the
Mitel test to the Lotus facts would have yielded a different result.

The Mitel interface was very rudimentary, yet the Tenth Circuit was
still able to find subject matter that met the copyright originality stan-
dard.445 The court’s conclusion about originality was probably correct
because of the extremely low threshold as enunciated in Feist. The only
factor that prevented the Mitel interface from having at least some pro-
tectable elements was that many of the features of the interface were
dictated by external considerations such as standard programming con-
ventions, hardware limitations and various network capabilities.446

Given the foregoing, it seems unlikely the Tenth Circuit would have con-
cluded that the Lotus 1-2-3 interface did not contain any protectable sub-
ject matter. The only remaining question would have been whether that
subject matter would have been filtered for reasons such as scènes à faire
or other limiting doctrines. With respect to scènes à faire, it is reasona-
ble to assume there would have been few if any external factors that
dictated Lotus’ choices. Accordingly, under a Mitel-like approach there
probably would have been sufficient protectable subject matter to pre-
vent direct copying of enough of the Lotus 1-2-3 menus and menu com-
mand hierarchy to create a commercially viable compatibility capability.

Since the proper use of a technical interface requires the use of exact
words, parameters and data structures, the application of the Mitel stan-
dard appears likely to prevent the use of many technical interfaces be-
cause under Mitel the use of certain words, parameters and data
structures can infringe copyright. This result seems counterintuitive
given the language of 17 U.S.C. §102(b), which provides that “[i]n no case
does copyright protection for an original work of authorship extend to
any idea, procedure, process, system, method of operation, concept, prin-

the optional portion of the interface. A much more likely scenario is that the copyrightable
portions of a technical interface will be spread across both the option and mandatory sec-
tions of the interface, meaning that anyone who does not have permission from the copy-
right owner will be, in all likelihood, unable to make any commercial use of that technical
interface.

444. Lotus V, 49 F.3d at 815.
445. Mitel, 124 F.3d at 1374 (finding that the parameter ranges, called “values” in the

decision, reveal the existence of intellectual production and conception that reflects at least
the minimal degree of creativity required to qualify as an original work of authorship).

446. Id. at 1375.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 85 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 433

ciple, or discovery, regardless of the form in which it is described, ex-
plained, illustrated, or embodied in such work.”447 The plain language of
§102(b) differs from the meaning ascribed to that section by the Tenth
Circuit when it said that “Section 102(b) does not extinguish the protec-
tion accorded to a particular expression of an idea merely because that
expression is embodied in a method of operation at a higher level of ab-
straction.”448 Hence, the Tenth Circuit’s formulation of Section 102(b)
appears to be that in no case, except if an idea, procedure, process, sys-
tem, method of operation, concept, principle, or discovery is expressed at a
higher level of abstraction, does copyright protection for an original work
of authorship extend to any idea, procedure, process, system, method of
operation, concept, principle, or discovery. This difference may not be
significant for some subject matter contemplated by §102(b), such as
ideas, concepts, principles and discoveries, where the exact wording of
those ideas, concepts, principles and discoveries will not prevent others
from using them; however, for processes, systems, and methods of opera-
tion that depend on the use of exact wording, the difference is very signif-
icant. The First Circuit made this point in Lotus, when the court
observed that specific words are essential for a computer interface
(whether that be a computer-human interface or a technical interface).
If some of those specific words cannot be used by potential competitors
because of copyright protection, then the use of the entire interface will
essentially be denied.449 Not only does the approach taken by the Tenth
Circuit appear to conflict with the plain words of §102(b), but it also ap-
pears to conflict with any narrower interpretation of that section that
may be suggested by Baker v. Selden.450 Under Baker v. Selden, protec-
tion is still denied to subject matter that is necessary for the use of a
method of operation.451 There is no reason to believe that expression at
a lower level of abstraction will not include material necessary for the
use of a method of operation at a higher level of abstraction. The key
point is that specific words, parameters and data structures are gener-
ally required to use any method of operation. If the use of any necessary
words, parameters or data structures is prohibited because of copyright
protection, then the corresponding method of operation will not be avail-
able as a practical matter. Accordingly, use of the Tenth Circuit’s Mitel
test can help support a de facto monopoly for sufficiently popular
interfaces.

In Mitel, the Tenth Circuit adopted an extremely low level of ab-

447. 17 U.S.C. § 102(b) (2008) (emphasis added).
448. Mitel, 124 F.3d at 1372.
449. In most cases, partial interoperability between computer and software components

will not be commercially viable or will give the original vendor an enormous advantage.
450. Baker v. Selden, 101 U.S. 99 (1879).
451. Id. (emphasis added).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 86 28-SEP-10 10:21

434 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

straction.452 Notwithstanding this very low level of abstraction, if the
court had not denied copyright protection for other reasons there would
have been copyrightable subject matter that could have been used to
deny potential competitors practical access to the entire Mitel method of
operation since those competitors would not have been able to properly
interpret and process many Mitel commands. As a commercial matter,
in most cases an inability to fully support a technical interface is going to
be tantamount to not being able to support the interface at all. The
Tenth Circuit’s interpretation of §102(b) is likely to have the effect of
nullifying the exclusions contemplated by that section for a very signifi-
cant number of computer interfaces.453 It seems unlikely that this was
Congress’ intent when it drafted §102(b). For computer interfaces that
require the precise use of specific words, formats and data structures,
the First Circuit’s approach in Lotus seems to be more in accord with
principles first enunciated in Baker v. Selden and later codified in
§102(b).454

iv. Mitek

At about the same time as the Tenth Circuit considered Mitel, and
only a few months after it had considered similar issues in Bateman, the
Eleventh Circuit had another chance to examine the scope of copyright
protection for technical interfaces. Mitek Holdings, Inc. v. Arce Engi-
neering Co., like Lotus, involved a consideration of the scope of copyright
protection for menu commands and menu command hierarchies.455

Mitek dealt with a wood truss program called ACES, which the
plaintiff had developed, and a competing program called TrussPro, which
the defendant Arce had developed.456 These programs were intended to
allow truss fabricators to design their own wood trusses without needing
an engineer for the design work, thereby allowing fabricators to reduce
expenses.457 The allegedly infringed product originally had been devel-
oped by a company called Advanced Computer Engineering Specialties,

452. Mitel, 124 F.3d at 1373 (Mitel does not claim copyright in the names of the func-
tions that are accessed by its command codes or in the idea of using four-digit numeric
codes to manipulate the functions of a call controller. Rather, Mitel contends that copy-
right protection extends only to its selection of particular ‘values’ assigned to the “descrip-
tion” digit of Mitel’s codes).

453. While the interface in question was not protected under the Tenth Circuit’s test,
the arbitrary selection of command names and the very constrained environment in which
this interface operated seem to make this result the exception rather than the rule.

454. See Lotus Dev. Corp. v. Borland Int’l, Inc. (Lotus V), 49 F.3d 807 (1st Cir. 1995),
aff’d by an equally divided court, 516 U.S. 233 (1996) (per curiam).

455. Mitek Holdings, Inc. v. Arce Eng’g Co., Inc., 89 F.3d 1548 (11th Cir. 1996).
456. Id. at 1550.
457. Id. at 1551.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 87 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 435

Inc. (“Advanced”).458 Some years later, Mitek purchased Advanced and
as a result gained ownership of ACES.459 The author of ACES was an
Advanced employee named Sotolongo.460 After Mitek acquired Ad-
vanced, Sotolongo left to join Arce.461 At Arce, Sotolongo was asked to
develop “from scratch” another wood truss layout program.462 That ef-
fort resulted in the creation of the TrussPro program. Shortly after the
commercial release of Trusspro, Mitek filed an action alleging copyright
infringement.463

The district court in this case held that there was no copyright in-
fringement. One of the primary reasons for this finding was the district
court’s ruling that the menu and submenu command tree structure in
the ACES program was an uncopyrightable process because it mimicked
the way a draftsman would design a roof truss plan by hand.464 The
Eleventh Circuit agreed with this finding. In commenting on the district
court ruling, the Eleventh Circuit said:

Mitek seems to misapprehend the fundamental principle of copy-
right law that copyright does not protect an idea, but only the expres-
sion of the idea. The idea-expression dichotomy is clearly set forth in 17
U.S.C. §102(b), which by its express terms prohibits copyright protec-
tion for “any idea, procedure, process, system, method of operation, con-
cept, principle, or discovery, regardless of the form in which it is
described, explained, illustrated, or embodied in such work.” 17 U.S.C.
102(b). Were we to grant copyright protection to Mitek’s user interface,
which is nothing more than a process, we would be affording copyright
protection to a process that is the province of patent law. As the Fed-
eral Circuit stated, “Patent and copyright laws protect distinct aspects
of a computer program.” Atari Games Corp. v. Nintendo of America,
Inc., 975 F.2d 832, 839 (Fed.Cir.1992). Patent law “provides protection
for the process or method performed by a computer in accordance with a
program,” whereas copyright protects only “the expression of that pro-
cess or method.” Id. If, however, the patentable process and its expres-
sion are indistinguishable or inextricably intertwined, then “the process
merges with the expression and precludes copyright protection.” Id. at
839-40. Such is the case with the menu and the submenu command
tree structure of the ACES program.465

The Eleventh Circuit went on to comment on Lotus and indicated
that, unlike the First Circuit, “we need not decide today whether a main

458. Id. at 1552.
459. Id.
460. Id. at 1551.
461. Mitek Holdings, 89 F.3d at 1552.
462. Id.
463. Id. at 1152-53.
464. Id. at 1556.
465. Id. at 1556-57 n.19.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 88 28-SEP-10 10:21

436 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

menu and submenu command tree structure is uncopyrightable as a
matter of law.”466 This observation is somewhat different than the state-
ment made by the same court in Bateman, when it said “[i]t is an incor-
rect statement of the law that interface specifications are not
copyrightable as a matter of law.”467 In Mitek, the Eleventh Circuit’s
potential disagreement with the First Circuit is more narrowly focused
since the subject matter in Mitek is virtually identical to that in Lotus.
Hence the differences between the First Circuit and the Eleventh Circuit
appear to be substantive and not a function of the subject matter in the
respective cases that those courts considered.

The outcome in Mitek is somewhat similar to the outcome in Mitel.
Ultimately, the plaintiff in each case was unable to succeed because its
interface did not have enough protectable expression to support a finding
of substantial similarity.468 However, the particular doctrines used in
each case to eliminate potentially protectable subject matter differed.
The decision to classify the menus and menu command hierarchies in
Mitek as a process rather than a method of operation was also different.
Nothing in the Mitek decision suggests that the ACES menu command
hierarchy could not have been classified as a method of operation, as was
done for the menu commands and menu command hierarchy in Lotus or
the command interface in Mitel. The decision to classify the menus and
menu hierarchy as a process is probably reasonably unusual and due to
the fact that the ACES menu commands so closely tracked the actions an
actual draftsman would take in creating a roof truss plan. However,
since copyright protection for both processes and methods of operation is
excluded under §102(b), the classification of the menu command hierar-
chy as a process rather than a method of operation should not affect the
application of that section.

466. Id. at 1557. The Eleventh Circuit went on to observe:
Even were we to conclude that section 102(b) does not prohibit the ACES main
menu and submenu command tree structure from being entitled to copyright pro-
tection, MiTek would not prevail on this issue. This feature of the ACES programs
is unoriginal and not entitled to copyright protection. The look of the ACES pro-
gram is basically industry standard for computer aided-design (“CAD”) programs,
with the menu bars running across the top and the right, and the large work area
occupying most of the screen. In addition, based on the district court’s conclusion
that the ACES programs “mimic the steps a draftsman would follow in designing a
roof truss plan by hand,” a conclusion with which we find no fault, the structure of
the menu and submenu command tree of the ACES programs tracking that ap-
proach is unoriginal and uncopyrightable. The logical design sequence is akin to a
mathematical formula that may be expressed in only a limited number of ways: to
grant copyright protection to the first person to devise the formula effectively
would remove that mathematical fact from the public domain. The merger doc-
trine prohibits such an appropriation. Id. at 1557 n.20.

467. Bateman v. Mnemonics, Inc., 79 F.3d 1532, 1547 (11th Cir. 1996).
468. Mitek Holdings, 89 F.3d 1548; See also Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366 (10th

Cir. 1997).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 89 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 437

As in Mitel, the court found that there was no substantial similarity
largely because of the Filtration phase of the Abstraction-Filtration-
Comparison test. In Mitel, the Filtration phase relied on scènes à faire
and lack of originality.469 In Mitek, the Filtration phase relied on
merger and lack of originality.470 With respect to originality, the court
observed that the look of the ACES program was basically industry stan-
dard for computer aided-design programs.471 With respect to merger,
the court said the logical design sequence implemented by ACES was
akin to a mathematical formula that may be expressed in a limited num-
ber of ways.472 Consequently, the court was concerned that a grant of
copyright protection in such circumstances would effectively remove the
logical design sequence from the public domain.473

In general, Mitek is similar to Mitel in that it uses the Abstraction-
Filtration-Comparison test and accordingly appears open to the possibil-
ity that certain expression that may be necessary for the use of a process
or method of operation may be protected. However, while Mitek is not
supportive of the Lotus approach, the court did not explicitly reject that
approach. Mitek seems destined to be less relevant than cases like Mitel
and Lotus. First, Mitek did not take a definitive position on the protec-
tion to be accorded as a matter of law to potentially copyrightable subject
matter in menus and menu command hierarchies. Second, any subse-
quent courts, if they want, should be able to limit the application of this
case to circumstances in which an interface closely tracks a process – a
situation that is probably much less likely to occur than cases in which
an interface is a method of operation.

Since the menus and menu command hierarchy in this case were not
found to have any copyrightable subject matter, this case does not pro-
vide any insight into how the Eleventh Circuit would rule in a case deal-
ing with non-filterable expression. While Mitek is like Mitel in that it
suggests that essential parts of a process, and by extension a method of
operation, can contain copyrightable expression, the court did not take a
definitive stand, thereby giving other courts further opportunity to dis-
tinguish this case if they so choose. In this regard, Mitel is more signifi-
cant because the court in that case indicated how it intends to deal with
interfaces that contain copyrightable expression. Since the interface in
Mitel did not contain protectable subject matter, the Tenth Circuit did
not need to address the issue of whether copyright protection should be
denied to methods of operation as a matter of law, but instead the Tenth
Circuit chose to state its position on this broader issue. Ultimately,

469. Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366, 1373-76 (10th Cir. 1997).
470. Mitek Holdings, 89 F.3d at 1558.
471. Id. at 1557.
472. Id.
473. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 90 28-SEP-10 10:21

438 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

Mitek does not provide significant guidance in respect to copyright pro-
tection for technical interfaces since on its narrow facts it deals with an
uncommon circumstance; and, in respect to the broader issues, the Elev-
enth Circuit chose to remain silent.

v. Baystate

At about the same time as the Lotus, Mitel, Bateman, and Mitek
cases were being decided by the First, Tenth, and Eleventh Circuits, a
district court in the First Circuit decided a case that has been touted as
having significance for the scope of copyright protection for technical in-
terfaces.474 In Baystate Technologies, Inc. v. Bentley Systems, Inc., the
district court for Massachusetts decided that certain data structures in a
computer-aided design program, including their names and organiza-
tion, were not protectable under copyright.475 It has been suggested that
these program elements are indistinguishable from a larger class com-
prised of names, parameters, formats, and structures that must be em-
ployed to invoke the functionality of various operating systems,
computer languages and application programs and that Baystate is sup-
portive of the proposition that using or copying these labels and struc-
tures for compatible works is permitted under copyright law.476 While
this proposition may be true, it seems unlikely that Baystate will be help-
ful in supporting it. Upon examination, the reasoning in Baystate is at
some points mystifying and at other points simply wrong.

The factual setting in Baystate is reasonably complex because of the
use of a common third-party outsourced developer, and also because Bay-
state was not the original developer of the allegedly infringed program.
However, these complexities do not ultimately change the copyright
analysis, and, accordingly, the case can be distilled to the following facts.
The plaintiff, Baystate Technologies, was the owner of a computer-aided
design product called CADKEY.477 The defendant, Bentley Systems,
was the owner of a software product called the Microstation Transla-
tor.478 The Microstation Translator was an add-on to the defendant’s
Microstation CAD product.479 The function of the Microstation Transla-
tor was to convert files in CADKEY format into a format understood by
the Microstation product.480 To accomplish this task the Microstation
Translator needed to read files in the CADKEY format and properly

474. Zimmerman, supra note 306.
475. Baystate Technologies, Inc. v. Bentley Sys., Inc., 946 F. Supp. 1079 (D. Mass 1996).
476. Zimmerman, supra note 306, at 9.
477. Baystate Technologies, 946 F. Supp. at 1082.
478. Id.
479. Id.
480. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 91 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 439

parse them into their various components.481 This was done by translat-
ing data structure definitions from the CADKEY product into the corre-
sponding native data structures used by the Microstation CAD
product.482 Thus, the Microstation Translator used some CADKEY data
structures and, in particular, used the various names of those data struc-
tures and their sub-components.483

The first of a number of curious statements made by the Baystate
court is that “because the data structures at issue in this case do not
bring about any result on their own, they are copyright protected, if at
all, only as a part of the whole computer program.”484 According to 17
U.S.C. §101 a computer program is “a set of statements or instructions to
be used directly or indirectly in a computer in order to bring about a
certain result.”485 Data structure definitions are directives to a compiler
and ultimately to a computer and operating system about memory or-
ganization in support of operations to be performed by a particular com-
puter program.486 At the very least it would seem that data structures
definitions are used indirectly to bring about a certain result and should
be accorded copyright protection in the same manner as any other state-
ment or instruction in a computer program. Later, the court states that,
“data structures are not, by themselves, executable, i.e. a computer can-
not read data structures and perform any function.”487 From a computer
science and copyright perspective this statement makes little sense.488

Computers cannot read anything other than zeros and ones, but that
does not mean only machine code is protected under copyright law. As a
practical matter, any computer program of any degree of sophistication
will consist of executable instructions and other non-executable compo-
nents that are nonetheless required for the operation of the program. At
least one other district court has held that data structures are included
within the definition of a “computer program.”489

481. Id.
482. Id.
483. Baystate Technologies, 946 F. Supp. at 1085.
484. Id. at 1086.
485. 17 U.S.C. § 101 (emphasis added).
486. The first step in designing a computer program is often a determination of the data

structures required to best achieve the desired result. Once this determination has been
made, the rest of the program is designed and developed accordingly.

487. Baystate Technologies, 946 F. Supp. at 1085.
488. See, Marci Hamilton & Ted Sabety, Computer Science Concepts in Copyright Cases:

The Path to a Coherent Law, 10 HARV. J.L. & TECH. 239, 247-49 (1997) (stating that com-
puter programs can be divided into three basic parts, one of which is the “data processing
section - the heart of any program”; and, “[i]nside the data processing section lies the collec-
tion of algorithms and data structures that actually perform the computations that users
demand”).

489. Positive Software Solutions, Inc. v. New Century Mortgage Corp., 259 F. Supp. 2d
531, 535 (N.D. Tex. 2003).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 92 28-SEP-10 10:21

440 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

In its analysis, the district court noted that the First Circuit held
that although the authors of Lotus 1-2-3 “made some expressive choices
in choosing and arranging the Lotus command terms, we nonetheless
hold that that expression is not copyrightable . . . The ‘expressive’ choices
of what to name the command terms and how to arrange them do not
magically change the uncopyrightable menu command hierarchy into
copyrightable subject matter.”490 The district court observed that there
was evidence to suggest that the CADKEY data structures were inde-
pendently created and were original expression. However, in reliance on
Lotus and applying merger and scènes à faire, the court concluded that
the choices made in selecting the CADKEY data structure names could
not make the uncopyrightable data structures copyrightable.491

The district court’s merger analysis is abbreviated and it is unclear
to what extent the court relied on merger in deciding the case. After its
merger analysis, the court then considered the applicability of scènes à
faire. As discussed in Positive Software Solutions, Inc. v. New Century
Mortgage Corp. and Zimmerman,492 the district court reversed the exter-
nalities consideration in the scènes à faire analysis. In particular, the
district court made the following observation:

In this case, the court concludes that the selection and organization
of the elements in the data files is dictated mainly by external factors.
The product being developed is a data translator that is designed to
“read” the data files of CADKEY. The process of “reading” the
CADKEY data files requires that the elements contained within the
data structures of the Translator be organized in the same manner as
the elements in the data structures of CADKEY. Without such compat-
ibility, the Translator would not function because it would “misread”
the CADKEY data files.493

It is apparent from the subsequent discussion that the phrase “prod-
uct being developed” can only refer to the allegedly infringing program
and not the allegedly infringed program.494 This type of scènes à faire

490. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 816 (1st Cir. 1995).
491. Baystate Technologies, 946 F. Supp. at 1088-89.
492. Positive Software Solutions, 259 F.Supp. 2d at 535 n.9; See Zimmerman, supra note

306, at 16-17.
493. Baystate Technologies, 946 F. Supp. at 1088 (emphasis added).
494. The court observes:

Significant differences between the names and organization of the names used in
the “target product” and the translator would be inefficient for the programmer.
For that reason, the data structure names in Infotech’s MODES product had to be
similar to the data structures in the Part File Toolkit documentation because the
computer programmer needed to refer to the documentation in the process of cre-
ating and manipulating the CADKEY “read” capability of MODES. Id. at 1088-89.

The court further observes:
With regard to industry-wide standards, Scott Taylor, an apparently objective and
neutral witness, shed at least some light. Mr. Taylor developed many translators,

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 93 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 441

analysis is obviously incorrect. The proper approach is to consider only
the allegedly infringed program and determine whether the relevant por-
tions of that program were dictated by external factors. In the context of
Baystate, this would have meant examining the CADKEY data struc-
tures and determining whether Baystate’s choices in developing those
data structures were dictated by any external factors. Instead, the dis-
trict court examined the allegedly infringing program and determined
that its use of the CADKEY data structures was an externality that was
dictated by a requirement to interoperate with CADKEY. This type of
analysis may have had some value in a fair use analysis, but is entirely
incorrect in a scènes à faire analysis. The fact that the CADKEY data
structures subsequently became an externality for another program can-
not retroactively make those data structures uncopyrightable. In its
scènes à faire analysis the district court also seems to have been influ-
enced by “industry standards.” Specifically, the court observed that an
apparently neutral witness testified that he had developed many trans-
lators, including one that could read CADKEY-formatted files, and it
was his practice to use, at least to some extent, the target product’s data
structure names and organization.495 In relying on this evidence, the
court seems to be using other instances of potential copyright infringe-
ment to support a finding that the data structures at issue are not copy-
rightable. It is unclear how the copying of different data structures or
other infringements of the data structures at issue can affect their copy-
right status. For these reasons, Baystate seems to provide little useful
analysis and is of virtually no value as precedent when determining
whether data structures and by extension technical interface structures
and names are protected under copyright.

vi. Positive Software

A number of years after Baystate, another district court in the Fifth
Circuit considered similar questions regarding the scope of copyright
protection for data structures. This district court, having the benefit of
the Baystate reasoning, reached a different conclusion about the
copyrightability of data structures. In Positive Software Solutions, Inc.

including one which could read CADKEY. It was his practice to use, at least to
some extent, both the target product’s data structure names and its organization
of the data structures. Hence, when he created a data translator which could
“read” CADKEY files, he used the CADKEY file names and the organization of
data structures as they were described in the Part File Toolkit documentation.
Walter Anderson testified that he used the same method in creating a translator
to read AutoCAD files. On the basis of relatively limited evidence of the CAD
industry standards, and after applying all of the relevant copyright principles, this
Court concludes, therefore, that the data structure names and the organization of
those names are not protected expression under the copyright laws. Id. at 1089.

495. Id. at 1089.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 94 28-SEP-10 10:21

442 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

v. New Century Mortgage Corp., the District Court for the Northern Dis-
trict of Texas considered whether data structures originally developed
for one program can be used by another program seeking to either oper-
ate with the first program or utilize data formatted for the first pro-
gram.496 The first program in this case was a product developed by
Positive Software called LoanForce.497 LoanForce was designed to pro-
vide automated support for the mortgage loan business, and, in particu-
lar, was designed to interact with a database to store and retrieve
information relevant to potential borrowers.498 New Century was in the
mortgage business and had licensed LoanForce from Positive Software
for use in New Century’s business.499 The license was on a subscription
basis, meaning New Century paid an annual license fee that allowed it to
use the LoanForce product for that particular year.500 Eventually, New
Century decided it wanted to save the money it was spending on
LoanForce and New Century had its own similar product developed.501

This development occurred while New Century was still using
LoanForce.502 The New Century replacement product was developed in
phases and an interim version of the replacement product, known as
LoanTrack-1, was developed first.503 This interim version did not pro-
vide the full functionality of LoanForce, and it needed to work in con-
junction with LoanForce to provide all of the capabilities of
LoanForce.504 At the same time, New Century was working on a final
version of its product, called LoanTrack-2, which would provide the full
functionality of LoanForce without having to rely on it in any way.505

Positive Software became aware of LoanTrack-1 and LoanTrack-2 and
concluded that New Century was making improper use of its intellectual
property rights.506 As a result, Positive Software sought a preliminary
injunction to prohibit New Century from continuing to infringe its intel-
lectual property rights in LoanForce.507

In deciding an application for a preliminary injunction, the district
court considered whether certain LoanForce data structures were copy-

496. Positive Software Solutions, Inc. v. New Century Mortgage Corp., 259 F.Supp. 2d
531 (N.D. Texas 2003).

497. Id. at 533
498. Id.
499. Id.
500. Id.
501. Id.
502. Positive Software Solutions, 259 F.Supp. 2d at 533.
503. Id.
504. Id.
505. Id. at 534.
506. Id.
507. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 95 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 443

rightable.508 LoanForce had been designed to interact with a database
to store and retrieve borrower information.509 LoanForce performed its
data transfer operations using statements written in Structured Query
Language or SQL.510 The first issue for the court was to determine
whether the LoanForce SQL data structures were copyrightable subject
matter, and the court had little trouble concluding they were.511 As in
Baystate, the court started with the statutory definition of “computer
program,” however, this court concluded that “the SQL Data Structures
here are a set of statements to be used indirectly in a computer in order
to bring about a certain result. Accordingly, the SQL Data Structures
are proper subject matter for copyright protection.”512 In this regard,
the court correctly observed that the definition of “computer program”
includes both direct and indirect steps used to bring about a certain re-
sult.513 Further, the court did not limit the definition of “computer pro-
gram” to only those steps that are actually executed or bring about a
direct result on their own.514 The court reached this conclusion notwith-
standing its consideration of Baystate. In discussing Baystate, the court
observed that the expression in this case went well beyond the “minimal
degree of creativity” or “minimal creative spark” required by Feist and
that there was no indication that the granting of copyright protection to
the data structures at issue would grant a monopoly over any al-
gorithm.515 The district court also indicated that it did not subscribe to
the view taken by the court in Baystate that the role of creative expres-

508. Positive Software Solutions, 259 F.Supp. 2d at 535.
509. Id.
510. Id.
511. Id.
512. Id.
513. It should be noted that SQL or Structured Query Language was used to define the

data structures in Positive Software. SQL is a computer language that is designed to store,
manipulate, and retrieve data stored in relational databases. SQL is a declarative pro-
gramming language. A declarative programming language is a high-level language that
describes a problem rather than describing a solution to a problem. By contrast, an imper-
ative programming language describes how to obtain a solution. SQL does not describe
how to find data in a database, but instead describes criteria for finding that data. The
data structures in a more traditional language, such as C or Java, are also declarative. The
purpose of the data structures in C or Java is to declare or describe the organization of data
that will be used by the imperative portions of a program. These data structures in and of
themselves do not describe how to solve a problem but are instead used in helping to solve
that problem. Because SQL was used, the data structures in Positive Software probably
looked more like the imperative computer program instructions typically seen in C or Java.
However, based on the reasoning in the judgment, it does not appear that the fact that the
data structures in Positive Software were defined using SQL rather than data structure
syntax such as that found in C or Java affected the outcome.

514. Positive Software Solutions, 259 F.Supp. 2d at 535.
515. Id. at 535 n.6.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 96 28-SEP-10 10:21

444 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

sion in developing data structures was of little importance.516

Having concluded that the SQL data structures were copyrightable,
the court needed to determine whether there had been actionable copy-
ing. The court found that New Century’s replacement product, Loan-
Track-1, contained substantial verbatim or near verbatim copying of the
SQL statements from LoanForce.517 Therefore the question of factual
copying was easily resolved. The remaining question was whether the
copied material supported a finding of substantial similarity. For the
purposes of this analysis, the district court used a modified Abstraction-
Filtration-Comparison method.518 Because of the verbatim copying, the
court did not undertake an Abstraction phase.519 Instead, the court pro-
ceeded directly to the Filtration phase to determine whether any parts of
the data structures should be removed prior to the Comparison phase.520

The district court identified scènes à faire as the most relevant limiting
doctrine, but then dismissed the applicability of that doctrine.521 In do-
ing so, the district court again referred to Baystate and rejected the ap-
proach taken there noting that “[the] commercial compatibility
argument is more in the nature of a fair use argument, rather than an
argument that certain aspects of the copyrighted work were dictated by
market factors and were thus unprotectable.”522 The court went on to
find that there was no evidence to suggest that the design of the SQL
data structures, such as the organization of data into tables, the selec-
tion of column elements for the tables, the names, data types, or sizes of
the column elements, were dictated by external factors.523 As a result,
the court did not filter any of the SQL data structures.524 Having com-
pleted the Filtration phase, the court did a comparison and found that
the amount of near verbatim copying of significant portions of the SQL
data structures supported a finding of substantial similarity between
LoanTrack-1 and LoanForce.525

In Baystate and Positive Software, two district courts reached oppo-
site conclusions about the copyrightability of data structures. In one
case, a court expressed the view that the data structures in question
were neither a substantial nor significant part of the whole copyrighted

516. Id. at 535 n.5.
517. Id. at 535-36.
518. Id.
519. Id. at 536.
520. Positive Software, 259 F.Supp. 2d at 536.
521. Id.
522. Id. at 356 n.9.
523. Id. at 356.
524. Id.
525. Id. at 537.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 97 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 445

work.526 In the other case, a court found that even given a sliding scale
with narrower protection for functional works, the significance of the
data structures to the program as a whole supported a finding of sub-
stantial similarity.527 While it is not possible, without a detailed exami-
nation of the works in question, to ascertain the relative importance of
the particular data structures to their respective programs, it is worth
noting that the data structures performed roughly the same function in
each case. In one instance, the program stored design data in a file for
retrieval and processing by a CAD tool; in the other case, the program
stored customer/prospect data in a database for retrieval and processing
by a customer management tool. Thus both programs stored raw data
that was to be retrieved and utilized by the applicable program. When
designing a program, software developers tend to view data definition,
data processing and data flow identification as significant steps. Hence,
data structures are often critical in determining the overall structure
and design of a program.528 It seems reasonable to conclude that a typi-
cal software developer will probably ascribe more value to the data struc-
tures within a program than did the court in Baystate. In support of its
conclusions, the court in Positive Software noted that the copyright re-
quirement for creativity is quite low and the data structures in question
could not be characterized as generic.529 Given the general importance
ascribed to data structures by software developers, it would seem that
the court in Positive Software reached the correct conclusion about the
copyrightability of data structures.

The Positive Software court also correctly observed that scènes à
faire is applied by considering the allegedly infringed program and not
the allegedly infringing program. This difference is crucial because
when a program is being designed to be compatible with another pro-
gram, the program being designed for compatibility will almost always
need to use the same data structures, APIs, and protocols as the program
with which compatibility is being sought. For a program seeking com-
patibility, the use of these program elements is always going to be an

526. Baystate Technologies, Inc. v. Bentley Sys., Inc., 946 F.Supp. 1079, 1089 (D. Mass
1996).

527. Positive Software Solutions, 259 F.Supp. 2d at 537.
528. See, CMAX/Cleveland, Inc. v. UCR, Inc. 804 F.Supp. 337, 344 n.3 (M.D. GA. 1992).

The court in this case observed that:
The determination of how to store data in files is a crucial element in the design
process of a computer software system. The layout or blueprint for data storage is
the foundation upon which a computer system is built, and is the result of a crea-
tive thought process. For example, when creating a file, a system designer must
make numerous decisions concerning the material to be included in the file, the
order of that material and how that material can be accessed and used by the
system.

529. Positive Software Solutions, 259 F.Supp. 2d at 535 n. 5.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 98 28-SEP-10 10:21

446 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

externality. If scènes à faire was applied in the manner it was in Bays-
tate, then the result would be pre-ordained and the elements required for
compatibility would always be filtered. However, as was observed in
Positive Software, while this type of analysis may be relevant for a fair
use analysis, it is incorrect when used to determine the copyrightability
of a program with which compatibility is being sought. Instead, the pre-
existing program must be considered on its own without reference to sub-
sequent programs that seek to interoperate with it. If the data struc-
tures in such a pre-existing program are to be filtered because of
externalities, only those externalities dictated to the pre-existing pro-
gram can be used. Such externalities can never arise from a subsequent
program seeking compatibility with the pre-existing program.

For these reasons, the analysis in Positive Software appears to be
much stronger than that in Baystate, and it seems likely that subsequent
courts considering these matters will be much more likely to adopt the
reasoning in Positive Software when considering copyright protection for
data structures.

vii. Engineering Dynamics

One of the cases that the Positive Software court needed to consider
was Engineering Dynamics, Inc. v. Structural Software, Inc.530 Since the
Fifth Circuit Court decided Engineering Dynamics, the court in Positive
Software needed to ensure that its reasoning was consistent with the
Fifth Circuit’s decision in that case which held that copyright could apply
to certain user interface input/output formats. Engineering Dynamics is
interesting for two reasons. First, as a circuit court decision, it is a
stronger precedent, and second, its factual setting contains elements
often found in cases dealing with copyright protection for computer inter-
faces and other elements often found in cases dealing with copyright for
data structures. As such, Engineering Dynamics raises interesting ques-
tions about how these issues interrelate.

In Engineering Dynamics, the plaintiff, Engineering Dynamics, Inc.
(“EDI”), brought a claim of copyright infringement against the defendant
Structural Software (“Structural”) alleging that a Structural product
called StruCAD infringed copyright in an EDI product known as SACS
IV.531 The technical interface in this case included data structures that
represented 80-column fields, which recorded various data items rele-
vant to the analysis of environmental and other forces on physical struc-
tures.532 These data structures had originally been recorded on punch

530. See, Engineering Dynamics, Inc. v. Structural Software, Inc., 26 F.3d 1335 (5th Cir.
1994).

531. Id. at 1338.
532. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 99 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 447

cards, but were subsequently moved to magnetic storage devices.533 In
the parlance of the case, the data structures were referred to as “input
formats” or “cards.”534 As described by the court, the input formats were
a series of words and a framework of instructions that acted as prompts
for the insertion of relevant data.535

EDI had an interesting challenge in making its claim because EDI
had previously successfully defended a lawsuit filed against it in which it
had been alleged that some of the input formats used in an earlier ver-
sion of the EDI product (SACS II) infringed those of another competitor’s
product.536 In that earlier case, the court ruled that the nine input for-
mats at issue, including their structure, sequence and organization, were
not copyrightable.537 Because of this earlier ruling, EDI did not claim
copyright protection for any individual input formats, but instead
claimed copyright protection based on the structure, sequence and organ-
ization of its input formats as a whole.538

Accepting this approach, the Fifth Circuit ruled that the input for-
mats were protectable expression.539 Specifically, the court held that
“EDI has proved original expressive content in the selection, sequence
and coordination of inputs.”540 The court observed that there were other
programs that performed the same types of analyses, but had dissimilar
interfaces.541 The Fifth Circuit also drew support from the decision of
the district court in Lotus. The Fifth Circuit’s finding that the input for-
mats as a whole had sufficient originality to meet the copyright standard
is almost certainly correct. However, the First Circuit subsequently
overruled the district court decision in Lotus.542 In that case, the First
Circuit Court held that the district court had inappropriately limited the
Lotus 1-2-3 method of operation to an abstraction.543 The First Circuit
held that methods of operation are not limited to abstractions and if spe-
cific words are essential to operating something then those words are

533. Id.
534. Id.
535. Id.
536. Synercom Tech., Inc. v. Engineering Dynamics, Inc., 462 F.Supp. 1003 (N.D. Tex.

1978).
537. Id.
538. Engineering Dynamics, 26 F.3d at 1342 (“EDI makes a different claim that several

dozen input formats taken together form a copyrightable work, because they represent but
one of many ways of expressing a mode of computerized structural analysis”). Based on
this distinction, the court ruled that this action was distinguishable from the earlier
Synercom case.

539. Id.
540. Id. at 1346.
541. Id.
542. Lotus Dev. Corp. v. Borland Int’l, Inc. (Lotus V), 49 F.3d 807 (1st Cir. 1995).
543. Id. at 816.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 100 28-SEP-10 10:21

448 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

part of a method of operation and are not protectable.544 If the Fifth
Circuit had used this approach instead of the approach taken by the dis-
trict court, the results in Engineering Dynamics would probably have
been quite different.

The Fifth Circuit never considered whether the EDI input formats
were a part of a method of operation – at least not in the manner contem-
plated by the First Circuit.545 There is, however, enough of a factual
description in the decision to reasonably conclude that the input formats
were probably a part of a method of operation under the criteria used by
the First Circuit in Lotus. As was discussed earlier, the First Circuit
held that a method of operation is “the means by which a person operates
something, whether it be a car, a food processor, or a computer.”546 The
EDI input formats or cards were described in the following ways:

The purpose of the SACS input formats is to mediate between the
user and the program, identifying what information is essential and
how it must be ordered to make the program work.547

The input and output formats for SACS IV are quasi-textual; while
they guide the user in performing a series of sophisticated structural
analyses, they consist of a series of words and a framework of instruc-
tions that act as prompts for the insertion of relevant data.548

[Structural] asserts that the data formats are merely a template
that enables an engineer to use his tool, the computer.549

According to the First Circuit, once an interface has been deter-
mined to be a method of operation, then the expressive choices made in
the creation of the components of that interface that are necessary for
the use of the method of operation cannot transform the uncopyrightable
method of operation into copyrightable subject matter.550 As First Cir-
cuit further observed, the fact that the interface could have been ex-
pressed in a number of different ways is irrelevant.551 One factual
aspect of Engineering Dynamics that differs from Lotus is that the data

544. Lotus V. 49 F.3d at 816.
545. Engineering Dynamics, 26 F.3d at 1346. The court did consider whether the user

interface was a process or method in what the court characterized as a Baker v. Selden
argument. In concluding that the input formats were not a process or method the court
observed that “[t]he question is whether the utilitarian function of the input formats, which
ultimately act like switches in the electrical circuits of the program, outweigh their expres-
sive purpose so as to preclude copyright protection.” Id.

546. Lotus V, 49 F.3d at 815.
547. Engineering Dynamics, 26 F.3d at 1346 (emphasis added).
548. Id. at 1342.
549. Id. at 1345. This was a characterization suggested by the defendant. While the

suggestion that the input formats are mere templates is probably incorrect, the assertion
that the input formats are used to operate the program is consistent with statements made
by the court.

550. Lotus V, 49 F.3d at 816.
551. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 101 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 449

structures in question were almost certainly used in other parts of the
SACS IV program. However, given that the data structures were such
an integral part of the method of operating SACS IV, it seems reasonable
to conclude that, under Lotus, copyright protection would have been de-
nied at least to the extent the data structures were used within the
method of operation, since the method of operation could not have been
properly used without them. If such an approach is taken in subsequent
cases, it will have significant implications for the copyright analysis of
dynamic linking and inter-process communication. Complex data struc-
tures are often used in both dynamic linking and inter-process communi-
cation to describe the parameters exchanged by linking programs or the
messages exchanged by communicating processes.

Having determined that there was sufficient originality to conclude
that the input formats contained copyrightable expression, the Fifth Cir-
cuit remanded the case back to the district court to perform a Filtration
analysis on the input formats.552 Therefore, this case did not definitively
determine whether the input formats contained protectable subject mat-
ter, however, the final result of the Filtration analysis is not important.
The important finding was that the SACS IV input formats could have
been protected under copyright. Accordingly, Engineering Dynamics is
similar to Mitel and differs from Lotus, which probably would have de-
nied copyright protection.

viii. CMAX/Cleveland

CMAX/Cleveland, Inc. v. UCR, Inc. is another case with similar
facts to Engineering Dynamics and Positive Software and the district
court in CMAX/Cleveland reached largely the same conclusions as the
courts in Engineering Dynamics and Positive Software.553 In CMAX/
Cleveland the defendant copied various screen displays, report formats,
file layouts, file names and transaction codes used in the plaintiff’s pro-
gram.554 The defendant had been a licensee of the plaintiff and had de-
cided it wanted to develop a program of its own to save license fees.555

The evidence suggested that the defendant developed its program by cop-
ying the design of the plaintiff’s program, including side-by-side compari-
sons of the respective programs and detailed reviews of the plaintiff’s
source code.556 There was also evidence that the defendant was in
breach of its license agreement and had negotiated in bad faith in con-

552. Engineering Dynamics, 26 F.3d at 1347.
553. See CMAX/Cleveland, Inc. v. UCR, Inc., 804 F. Supp. 337 (M.D. Ga. 1992).
554. Id.
555. Id.
556. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 102 28-SEP-10 10:21

450 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

nection with a possible site license for the plaintiff’s program.557

As in Positive Software and Engineering Dynamics, the Abstraction-
Filtration-Comparison test was used as the analytic framework, al-
though, as in Positive Software, there was virtually no Abstraction anal-
ysis. Like the earlier cases, the court concluded that the file formats
were expressive because “Computermax designed its file structures from
a myriad of possible options and alternatives.”558 The file formats were
not filtered because they were not dictated by externalities. The court
reached similar conclusions for the copied screen displays, report lay-
outs, and transaction codes.559

Thus CMAX/Cleveland does not provide any new insight into the
approaches taken by courts in these types of scenarios. It is, however,
interesting to speculate about the outcome under a Lotus-like analysis.
Unlike Engineering Dynamics, where a Lotus-like approach probably
would have led to a different result, it is not clear that a Lotus-based
analysis would have changed the outcome in this case. The reason for
this is that it is not clear that the file structures in CMAX/Cleveland are
part of a method of operation. In this case, the file formats were essen-
tially a description of data stored in a repository or a database that could
be retrieved, analyzed and processed by a user of the program. However,
it is not clear that these file formats were part of the means by which the
program was operated. The file formats/data structures seem to have
been used in a similar manner to those in Positive Software and differ-
ently from the way the file formats/data structures were used in Baystate
and Engineering Dynamics. In those cases, the files and file formats
were used to input the data to be processed. The provision of data to
those programs was a key step in their operation. In contrast, in CMAX/
Cleveland and Positive Software the file formats appear to describe data
stored in databases used by the respective programs. This data appears
to have been originally supplied to the programs by some other mecha-
nism that did not use the data formats at issue.560 While it is still possi-
ble that a court might find that such database or repository formats are

557. Id. at 343-44. The evidence suggests that the defendant negotiated a price for a
site license that it never intended to purchase and that the negotiations were done to gain
time to continue to study and copy the plaintiff’s program.

558. Id. at 355.
559. CMAX/Cleveland, 804 F. Supp. at 355.
560. Id. Based on the limited description in the case, it seems possible that some of the

material at issue may have been part of a method of operation. For example, the court
observed that the defendant copied the transaction codes so employees who were familiar
with the plaintiff’s system would not have to relearn different codes to use the defendant’s
system. Based on this observation, it appears that the transaction codes may have been
part of a menu command system. If the transaction codes were part of a menu command
system, then under a Lotus-based analysis, the transaction codes may not have been pro-
tected under copyright law.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 103 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 451

part of a program’s method of operation, the probability of such a finding
seems less likely than that for input formats such as those in Baystate
and Engineering Dynamics.561

Thus, under a Lotus-based analysis, it seems likely that the results
in CMAX/Cleveland would have been largely the same. Assuming the
data formats in question were not part of a method of operation, they
would have qualified as protected expression and would have supported
a finding of substantial similarity and copyright infringement (as was
ultimately determined by the CMAX/Cleveland court). It also seems
likely that a similar result would have been reached for the various
screens and report formats. The one area where the results may have
differed from the actual results was in the transaction codes. Based on
the limited description in the decision, it is not possible to make a defini-
tive determination. However, if the transaction codes were used in the
operational interface of the program then under Lotus there would have
been a greater chance they would not have been protected because they
may have been a necessary part of the method of operation for the pro-
gram. If the transaction codes were not used in an operational interface
then the outcome would probably be the same as in the actual case.

ix. Lexmark v. Static Control

The Sixth Circuit Court of Appeals has also considered the scope of
copyright protection for methods of operation. In Lexmark International,

561. It is also interesting to consider whether output formats such as those in Baystate
and Engineering Dynamics are part of a method of operation under a Lotus-based analysis.
Under Lotus it appears that subject matter will not be protected if it is part of the means by
which a program is operated. While it is reasonably easy to conclude that the manner in
which information is provided to a program is part of the means of operating that program,
it is not as easy to conclude that the manner in which information is output by a program is
part of the means by which that program is operated. It can certainly be argued that get-
ting results from a program is critical to operating that program. Applying that rationale,
the output of results could qualify as part of the method of operation for a program. How-
ever, as a practical matter, the ability to read input formats seems to be much more impor-
tant from a commercial perspective. As illustrated in Baystate and Lotus, the ability to
read input formats is very important for new entrants in a market to enable them to offer
commercially viable alternatives to an incumbent product. In both Baystate and Lotus,
each of the defendants had their own file formats and menu hierarchies and still felt there
was a commercial requirement to read existing files or macros in a competitor’s format. In
these cases, the main issue was not the need to generate output in a particular existing
format, but instead the need to read input in a particular existing format. Once that ex-
isting input data has been read and processed, it can be output in the new entrant’s native
format. Thus, while output formats may be determined to be part of a method of operation,
output formats do not seem to be as commercially significant as input formats. Further, if
output formats do not qualify as part of a method of operation, it seems likely that commer-
cial entities will still be able to create competitive products without having to rely on com-
petitors’ output formats.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 104 28-SEP-10 10:21

452 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

Inc. v. Static Control Components, Inc., the Sixth Circuit Court of Ap-
peals considered methods of operation in the context of lock-out codes
used to enable or prevent operation of a computer printer with particular
toner cartridges.562

This case was initiated by the well-known printer manufacturer
Lexmark against a company supplying microchips for use in Lexmark-
compatible toner cartridges.563 Lexmark marketed two types of toner
cartridges for its printers.564 “Prebate” cartridges were sold to custom-
ers with an upfront discount.565 In return for this upfront discount, cus-
tomers agreed, through a shrink wrap, to use a cartridge only once and
return the empty cartridge to Lexmark.566 This meant a customer could
not refill and reuse a Prebate cartridge.567 “Non-Prebate” cartridges
were sold without any upfront discount and were not subject to any re-
use restrictions.568 In addition to the contractual restrictions it imposed,
Lexmark also used technical measures to restrict the type of cartridges
used in its printers.569 Each Lexmark toner cartridge contained a
microchip that was used for a “secret handshake” with Lexmark print-
ers.570 The details of this secret handshake are reasonably complicated,
but central to understanding the case.

Each Lexmark printer contained a program known as the Printer
Engine Program.571 The Printer Engine Program is a complex program
used to control a variety of printer functions such as paper feed and
movement and printer motor control.572 Among the functions performed
by the Printer Engine Program was verification of handshake signals
sent to the printer by a cartridge being installed.573 Each Lexmark
toner cartridge contained a second program called the Toner Loading
Program.574 Unlike the Printer Engine Program, the Toner Loading
Program was very simple.575 One variant of the Toner Loading Program
was 37 bytes in length, while the other variant was 55 bytes in length.576

562. Lexmark Int’l, Inc. v. Static Control Components, Inc., 387 F.3d 522 (6th Cir.
2004).

563. Id. at 529.
564. Id.
565. Id.
566. Id. at 530.
567. Id.
568. Lexmark, 387 F.3d at 530.
569. Id.
570. Id.
571. Id.
572. Id.
573. Id.
574. Lexmark, 387 F.3d at 530.
575. Id.
576. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 105 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 453

The Toner Loading Program was used to measure the amount of toner
remaining in a cartridge based on the amount of torque sensed on the
toner cartridge wheel.577 The Toner Loading Program was also used in
the handshake process.578 Each time a printer was turned on or when
the printer door was opened, the Printer Engine Program would
download a copy of the Toner Loading Program from the cartridge so
toner levels in the cartridge could be measured.579 As part of this
downloading process, the Printer Engine Program performed a check-
sum580 on the byte values of the Toner Loading Program.581 The result
of the checksum operation was compared to a value stored at a specific
location in the printer cartridge.582 If the values did not match, the
Printer Engine Program assumed an error had occurred due to corrup-
tion of the Toner Loading Program.583 If this error occurred, a message
would be displayed to the user and the printer would not work until a
printer cartridge was installed that was able to properly exchange hand-
shake messages with the printer.584 If the checksum value matched the
value stored in the cartridge, the printer would operate properly.585

Therefore, a Lexmark printer would only work if a cartridge was in-
stalled that downloaded a toner measuring program capable of produc-
ing the expected checksum.586 This meant anyone wanting to create a
Lexmark compatible cartridge needed to incorporate a verbatim copy of
Lexmark’s Toner Loading Program in their cartridge.587 The defendant,
Static Control Components (“SCC”), created microchips that contained
such a verbatim copy.588 The use of these microchips allowed other com-
panies to create Lexmark-compatible toner cartridges.589

Lexmark sought to enjoin SCC’s sales of its Lexmark-compatible
microchips.590 Lexmark alleged three theories of liability – two were
based on the Digital Millennium Copyright Act (the “DMCA”) and one
was based on the Copyright Act.591 The two actions under the DMCA

577. Id.
578. Id.
579. Id.
580. Lexmark, 387 F.3d at 531. The checksum was actually a secure hash created using

the SHA-1 algorithm.
581. Id.
582. Id.
583. Id.
584. Id.
585. Id.
586. Id.
587. Lexmark, 387 F.3d at 531.
588. Id.
589. Id.
590. Id.
591. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 106 28-SEP-10 10:21

454 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

are not relevant to the topics under consideration. The Copyright Act
action was a straightforward allegation that SCC’s copying of the Toner
Loading Program was an infringement of Lexmark’s copyright in that
program.592

Lexmark was successful in its motion for injunctive relief, and the
district court ruled that Lexmark had established a likelihood of success
in its copyright infringement claim.593 The district court observed that
the requisite level of creativity necessary to establish originality in a
copyrighted work is extremely low and that the Toner Loading Program
could have been written in multiple ways.594 The district court rejected
the various defenses asserted by SCC.595 In particular, the district court
ruled that the Toner Loading Program was not a lock-out program, and
even if it was a lock-out program, security programs were just like any
other computer program and were not inherently unprotectable.596 The
district court also rejected SCC’s fair use and copyright misuse
defenses.597

On appeal, the Sixth Circuit overruled the district court and re-
manded the case back to the district court for further proceedings.598

However, the Sixth Circuit ruling was fragmented – producing a major-
ity opinion, a concurrence, and a partial concurrence and partial dis-
sent.599 Unlike the cases discussed earlier, the Lexmark ruling is based
primarily on merger. In the majority decision, the Sixth Circuit ruled
the district court had committed three legal errors.600 First, the district
court had only applied the idea – expression dichotomy and accompany-
ing principles of merger and scènes à faire in the second prong of the
infringement test (substantial similarity) and not in the first prong of the
infringement test (copyrightability).601 In discussing this error, the
Sixth Circuit observed that this is the approach taken in cases invoking
Professor Nimmer’s view that the idea-expression dichotomy “constitutes
not so much a limitation on the copyrightability of works, as it is a mea-
sure of the degree of similarity that must exist between a copyrightable
work and an unauthorized copy.”602 The Sixth Circuit stated that the
copyrightability of a computer program does not turn solely on the avail-
ability of other options for writing the program and that such an ap-

592. Id.
593. Lexmark, 387 F.3d at 531.
594. Id.
595. Id.
596. Id. at 531-32.
597. Id.
598. Id. at 551.
599. Lexmark, 387 F.3d at 551.
600. Id. at 537.
601. Id. at 537.
602. Id. at 538.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 107 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 455

proach would conflict with the Supreme Court’s decision in Feist.603

With respect to the issue of when to apply the idea–expression dichotomy
and, in particular, when to apply the doctrines of merger and scènes à
faire, the Sixth Circuit chose not to limit the use of the idea–expression
dichotomy to the substantial similarity comparison.604 In reaching this
conclusion, the court observed that the idea–expression dichotomy is
most commonly discussed during the consideration of substantial simi-
larity because the copyrightability of a work is generally less frequently
contested. The Sixth Circuit stated that the idea–expression dichotomy
is not a measure of similarity, but instead a means to distinguish pro-
tectable elements from unprotectable elements.605 Accordingly, the ma-
jority held that the idea–expression dichotomy is relevant during both
phases of the infringement test since copyright protection extends only to
expression and not to ideas.606

The second error committed by the district court was a failure to
consider whether the Toner Loading Program could have been expressed
in any other form when taking into consideration the functionality, com-
patibility and efficiency demanded of the program.607 The Sixth Circuit
considered the testimony of the party’s respective experts regarding pos-
sible expression in the Toner Loading Program.608 Based on the record
before the court at the preliminary injunction phase, the Sixth Circuit
concluded that the Toner Loading Program was not copyrightable.609

However, the Sixth Circuit left the matter open for the district court to
further examine this issue at the permanent injunction phase to deter-
mine (in accordance with the Sixth Circuit’s ruling) whether the Toner
Loading Program had sufficient originality to warrant copyright
protection.610

Finally, and most significantly, the Sixth Circuit held that the dis-
trict court erred in finding that the Toner Loading Program did not func-
tion as a lock-out code.611 In this regard, the Sixth Circuit observed that
if a single byte of the Toner Loading Program was changed, the resulting
checksum value would change causing the handshake to fail with result
that the printer would not operate.612 Given these facts, the court con-
cluded that the Toner Loading Program was a lock-out code because it

603. Id.
604. Id.
605. Lexmark, 387 F.3d at 538.
606. Id.
607. Id. at 539.
608. Id. at 538.
609. Id. at 541.
610. Lexmark, 387 F.3d at 541.
611. Id.
612. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 108 28-SEP-10 10:21

456 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

was necessary input to the checksum calculation and comparison.613

Since the Toner Loading Program was a lock-out code for the printer, the
merger and scènes à faire doctrines precluded it from copyright protec-
tion.614 The majority opinion also addressed an issue raised in the dis-
sent. In the dissenting opinion, Justice Feikens stated that the type of
use made by the alleged infringer of the relevant subject matter was crit-
ical in determining whether merger had occurred. In response, the ma-
jority said:

Judge Feikens is correct that a poem in the abstract could be copy-
rightable. But that does not mean that the poem receives copyright pro-
tection when it is used in the context of a lock-out code. Similarly, a
computer program may be protectable in the abstract but not generally
entitled to protection when used necessarily as a lock-out device.615

Ultimately, the court concluded, as did the courts in Lotus, Bateman
and Mitel, that there was no copyright protection for the subject matter
under consideration.616 However, the majority did not dispose of the is-
sue through a direct application of §102(b), but instead chose to deal with
the issue through the merger and scènes à faire doctrines.

As mentioned earlier, the Lexmark decision has three separate opin-
ions and a complete assessment of the case requires a consideration of all
three opinions. In addition to the majority opinion, Justice Merritt wrote
a concurring opinion, and Justice Feikens wrote a partially concurring
and partially dissenting opinion. The concurring opinion by Justice Mer-
ritt deals with matters related to the Digital Millennium Copyright
Act.617 The concurring and dissenting opinion by Justice Feikens, how-
ever, contains a number of observations pertinent to the scope of protec-
tion for methods of operation.618 In particular, Justice Feikens observed
that there is some disagreement between various circuits about whether
merger acts as a bar to copyrightability or simply as a defense to particu-
lar types of infringement.619 He went on to observe that the Second and
Ninth Circuits have taken the position that merger operates only as a
defense to infringement while the Fifth Circuit has held that merger de-
termines copyrightability.620 Justice Feikens also noted that Professor
Nimmer prefers the view that merger is a defense to infringement.621

Finally, Justice Feikens stated it was his belief that the majority did not

613. Id.
614. Id. at 542.
615. Id. at 544.
616. Lexmark, 387 F.3d at 541.
617. Id.
618. Id. at 556-57 (Feikens, J., concurring in part and dissenting in part).
619. Id.
620. Id. at 557.
621. Id. at 557 n.6.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 109 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 457

take a position on this circuit split;622 however, because of certain mat-
ters related to the various DMCA actions brought by the plaintiffs, Jus-
tice Feikens stated he believed that it was necessary to decide whether
merger determines the initial question of copyrightability, or only oper-
ates as a defense to infringement.623 This determination is also very rel-
evant when assessing copyright issues related to dynamic linking and
inter-process communication. In respect to this issue, Justice Feikens
stated:

I would exercise judicial economy and limit the holding to the case
of merger with a method of operation (which is the question I believe
this case presents), for the reasons below, I would find the merger doc-
trine can operate only as a defense to infringement in that context, and
as such has no bearing on the question of copyrightability.624

622. Lexmark, 387 F.3d at 557 (Feikens, J., concurring in part and dissenting in part).
This is an interesting observation. While it is true that the majority decision does not
explicitly discuss the circuit split on merger, the majority seems to have been reasonably
clear that merger is applicable during both phases of the infringement test. Hence, under
the majority approach, it appears that merger can be used to determine copyrightability
and as a defense to infringement. In particular the majority observed:

In refusing to consider whether “external factors such as compatibility require-
ments, industry standards, and efficiency” circumscribed the number of forms that
the Toner Loading Program could take, the district court believed that the idea-
expression divide and accompanying principles of merger and scènes à faire play a
role only in the “substantial similarity” analysis and do not apply when the first
prong of the infringement test (copyrightability) is primarily at issue. Lexmark,
387 F.3d at 537-38.

Later the majority said:
As a matter of practice, Nimmer is correct that courts most commonly discuss the
idea-expression dichotomy in considering whether an original work and a partial
copy of that work are “substantially similar” (as part of prong two of the infringe-
ment test), since the copyrightability of a work as a whole (prong one) is less fre-
quently contested. But the idea-expression divide figures into the substantial
similarity test not as a measure of “similarity”; it distinguishes the original work’s
protectable elements from its unprotectable ones, a distinction that allows courts
to determine whether any of the former have been copied in substantial enough
part to constitute infringement. Both prongs of the infringement test, in other
words, consider “copyrightability,” which at its heart turns on the principle that
copyright protection extends to expression, not to ideas. Id. at 538.

The majority went on to cite, with approval, Mason v. Montgomery Data, Inc., 967 F.2d
135, 138 n.5 (5th Cir. 1992), rejecting the argument that the merger doctrine applies only
to the question of infringement and noting that the Fifth Circuit has applied the merger
doctrine to the question of copyrightability. Id. at 539.

623. Id. at 557 (Feikens, J., concurring in part and dissenting in part). Justice Feikens
observed that the DMCA only protects works that are protected by Title 17 of the U.S. Code
or in which the copyright owner has a right under Title 17. According to Justice Feikens if
the doctrine of merger applied at the copyrightability stage, and merger was found to have
occurred, then a plaintiff will have failed to state a claim upon which relief can be granted
under the DMCA. However, if the merger doctrine is only applied at the infringement
stage, then even if merger is found to have occurred, there will still be a requirement to
determine whether protection might still be afforded under the DMCA.

624. Id. at 557 (footnotes omitted).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 110 28-SEP-10 10:21

458 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

Expanding on this finding, Justice Feikens stated that:
The Copyright Act denies copyright protection to, among other

things, methods of operation. 17 U.S.C. § 102(b). However, an other-
wise copyrightable text can be used as a method of operation of a com-
puter-for instance, an original, copyrightable poem could be used as a
password, or a computer program as a lock-out code. In my view, there-
fore, it is necessary to know what the potential infringer is doing with
the material in order to know if merger has occurred. In other words, if
I use my own copyrighted poem as a password or lock-out code, an indi-
vidual who published the poem as part of a book could not escape a
finding of liability for infringement. The rationale for the merger doc-
trine is that without it, certain ideas or methods of operation would be
removed from the public realm because all ways of expressing them
would be copyrighted. When a poem or program is used as a lock-out
code, it is being used as a step in a method of operation of the thing it is
locking. Therefore, to protect a work from copying when it is used as a
password would be to prevent the public from using a method of
operation.

Under this reasoning, an individual who copied a poem solely to use
as a password would not have infringed the copyright, because in that
scenario, the alleged infringer would have the defense that the poem
has “merged” with a method of operation (the password). By contrast,
someone who copied the poem for expressive purposes (for instance, as
part of a book of poetry) would not have this defense. For these reasons,
I would hold that in cases where the merger is with a method of opera-
tion, the merger doctrine should be applied as a defense to infringement
only, and not as informing the question of copyrightability of the work
itself.625

The position taken by Justice Feikens is interesting and if other
courts adopt this approach it could have significant implications for the
use of dynamically linked libraries and inter-process communication.
Under this approach, as long as any expressive material is used within a
method of operation, a calling program should not become a derivative or
infringing work of a called library because the substantial similarity test
should not be satisfied due to merger with a method of operation. This is
important since the viral provisions of the GPL are only engaged when
another work is a derivative or infringing work of the GPL-licensed
work.

The Feikens approach would also be significant for data structures
used within a method of operation. In Justice Feikens’ poem analogy,
one could easily replace the poem with a data structure. Extending the
analogy, if data structures are passed as parameters to a function or pro-
cedure (i.e. if they are part of a method of operation), then this type of
use should not support a finding of substantial similarity. Even if the

625. Id. at 557-58.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 111 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 459

data structures are inherently copyrightable, the fact they are being
used as part of a method of operation should mean they merge with that
method of operation and an alleged infringer should be able to use the
merger defense to avoid a finding of substantial similarity.626 If there is
no substantial similarity, then the use of these data structures cannot
make a calling program a derivative or infringing work of a linked li-
brary and the viral provisions of the GPL should not be engaged.

Accordingly, the scope of protection suggested in the dissenting opin-
ion in Lexmark seems closer to Lotus than Mitel. Under the Feikens ap-
proach, expression that is potentially copyrightable is not protectable in
the context of a method of operation.627 This approach is similar to Lo-
tus, which also does not protect expression necessary for the use of a
method of operation. Lotus, however, does not deal with the treatment of
that same expression outside the context of a method of operation. The
Feikens approach contrasts with Mitel, which allows the protection of
copyrightable expression within a method of operation.628 Furthermore,

626. An interesting question is whether the use of such data structures in other parts of
a program unrelated to the invocation of a GPL-licensed library will support a finding of
infringement. Based on the Feikens logic, it would seem that these types of uses can poten-
tially be infringing. In such scenarios, the use of such data structures will not be used in
connection with a method of operation and hence merger should not apply since an inabil-
ity to use those data structures in these circumstances will not prevent use of a method of
operation. This situation is similar to the scenario described by Justice Feikens where
someone copies a poem for expressive purposes, such as use as part of a book of poetry,
which would not be entitled to the merger defense. Such an outcome raises difficult ques-
tions since there will always be debate about whether a particular use is sufficiently con-
nected to a method of operation. For example, if a particular procedure performs data
processing and returns a result through a data structure, can a calling program use that
data structure in other parts of the calling program such as for further processing of the
returned result? This question is certainly debatable; however, it seems reasonable to ex-
pect that some of the value in using a method of operation is attributable to an ability to
subsequently use and process any results returned by that method of operation. Given the
foregoing, it appears reasonable to conclude that the merger defense should not be limited
to invocation and should be more broadly applied so a user of a method of operation can
obtain the full benefit of that method of operation, including an ability to use and further
process results obtained from that method of operation. However, in a case where a data
structure used in a method of operation is used by another program for functions unrelated
to that method of operation or exploitation of results returned by that method of operation,
then a denial of the merger defense seems justified.

627. Lexmark, 387 F.3d at 556-57 (Feikens, J., concurring in part and dissenting in
part).

628. After concluding that copyright protection for expressive parts of a method of oper-
ation was not denied as a matter of law, the Mitel court did not need to consider merger
since the facts of the case allowed the Tenth Circuit to decide the matter because of a lack
of originality. Accordingly, it is possible that if the Tenth Circuit had been considering a
method of operation containing expressive subject matter it may have applied the merger
doctrine and thus avoided infringement. That being said, the tenor of the decision suggests
that the Tenth Circuit would not have taken that approach and would have found a suffi-

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 112 28-SEP-10 10:21

460 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

if the approach taken by Justice Feikens had been applied to Bateman,
then the outcome probably would have been different than the actual
case. Under the Feikens approach, the Bateman interface would almost
certainly have been found to be a method of operation. Given the
amount of material in the interface, it also seems likely a court would
have found there was at least some copyrightable subject matter. A
court probably would have also held that the copyrightable subject mat-
ter merged with a method of operation thereby preventing a finding of
substantial similarity or copyright infringement because of the defense
of merger with a method of operation. Therefore, the scope of protection
for expression within a method of operation seems to be similar to the
level of protection provided under Lotus and less than that provided
under Bateman and Mitel.

x. Sega and Nintendo

There are two final cases of some relevance to the scope of copyright
protection for methods of operation. Neither case deals with methods of
operation in detail, but they are interesting because they contain fact
situations similar to Lexmark. These cases are also interesting because
one case implicitly provides protection to aspects of a method of opera-
tion while the other does not. The first case is Atari Games Corp. v.
Nintendo of America, Inc.,629 and the second case is Sega Enterprises,
Ltd. v. Accolade, Inc.630These cases are similar to Lexmark because each
deals with a lockout sequence for a game cartridge and console.631 Both
the Lexmark and Sega decisions purport to be consistent with the first of
these cases, Nintendo, however, a closer examination of the ruling and
facts in Nintendo suggests that Sega is not.

Nintendo considered various activities undertaken by Atari to try to
develop game cartridges that were compatible with the Nintendo NES
game console.632 These activities included typical reverse engineering
techniques such as electronic monitoring of communications between a
Nintendo game cartridge and an NES console and chemical peeling of
NES microchips.633 An interesting aspect of the case is that Atari’s re-
verse engineering efforts were unsuccessful until Atari obtained a copy of

cient amount of copyrightable subject matter within the method of operation to support a
finding of substantial similarity and copyright infringement.

629. Atari Games Corp. v. Nintendo of America Inc., 975 F.2d 832 (Fed. Cir. 1992).
630. Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992).
631. In Lexmark, the factual setting involved a toner cartridge that was plugged into a

printer. The Sega and Nintendo cases dealt with game cartridges that were plugged into
player consoles. In each case, the device receiving the cartridge checked for a particular
data stream before it would allow the printer or game console to operate.

632. Atari, 975 F.2d at 836.
633. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 113 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 461

Nintendo’s source code from the Copyright Office of the Library of Con-
gress.634 This copy of the Nintendo source code was in fact obtained in
violation of Copyright Office rules.635 After obtaining the Nintendo
source code, Atari restarted its reverse engineering program and was
eventually able to determine how the NES security system worked.636

Once Atari understood the security system, it was able to create NES-
compatible cartridges containing Atari games.637 These Atari cartridges
contained an Atari-developed unlocking program that was quite different
from the one in the Nintendo cartridges.638 However, both the Atari un-
locking program and the Nintendo unlocking program produced the
same data streams.639 The Atari unlocking program was written for a
different processor in a different programming language, but the Federal
Circuit nonetheless found that Atari had copied enough protectable ex-
pression to support a finding of copyright infringement.640 The court
summarized its finding in the following passage:

Finally, Nintendo seeks to protect the creative element of its pro-
gram beyond the literal expression used to effect the unlocking process.
The district court defined the unprotectable 10NES idea or process as
the generation of a data stream to unlock a console. This court discerns
no clear error in the district court’s conclusion. The unique arrange-
ment of computer program expression which generates that data
stream does not merge with the process so long as alternate expressions
are available. In this case, Nintendo has produced expert testimony
showing a multitude of different ways to generate a data stream which
unlocks the NES console.

At this stage in the proceedings of this case, Nintendo has made a
sufficient showing that its 10NES program contains protectable expres-
sion. After filtering unprotectable elements out of the 10NES program,
this court finds no error in the district court’s conclusion that 10NES
contains protectable expression. Nintendo independently created the
10NES program and exercised creativity in the selection and arrange-
ment of its instruction lines. The security function of the program ne-

634. Id.
635. Id. at 841-42.
636. Id. at 836.
637. Id.
638. Atari, 975 F.2d at 836. The Federal Circuit Court of Appeals described the Atari

program as follows:
The Rabbit uses a different microprocessor. The Rabbit chip, for instance, operates
faster. Thus, to generate signals recognizable by the 10NES master chip, the
Rabbit program must include pauses. Atari also programmed the Rabbit in a dif-
ferent language. Because Atari chose a different microprocessor and programming
language, the line-by-line instructions of the 10NES and Rabbit programs vary.

639. Id. at 836 (“Atari’s Rabbit program generates signals indistinguishable from the
10NES program”). Id. at 836-37 (stating that “the district court found, the Rabbit program
generates signals functionally indistinguishable from the 10NES program”).

640. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 114 28-SEP-10 10:21

462 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

cessitated an original signal combination to act as a lock and key for the
NES console. To generate an original signal, Nintendo had to design an
original program. In sum, the district court properly discerned that the
10NES program contains protectable expression. At a minimum,
Nintendo may protect under copyright the unique and creative arrange-
ment of instructions in the 10NES program.641

This passage has been interpreted in subsequent cases to mean that
merger does not occur if it is possible to write other programs that can
effectively generate the unlocking sequence.642 However, this appears to
be exactly what Atari did. In describing the Atari unlocking program,
the Federal Circuit noted that it was written on a different processor
using a different programming language.643 In fact, since the Atari
processor was faster than the Nintendo processor, the Atari program had
to include pause instructions so the data stream it produced would
match the unlocking sequence expected by a Nintendo con-
sole.644Consequently, the most significant similarity between the two
programs was that they produced the same data stream. Nonetheless,
the Federal Circuit ruled that:

641. Id. at 840 (citations omitted).
642. For example, in Lexmark Int’l., Inc. v. Static Control Components, Inc., 387 F.3d

522, 543 (6th Cir. 2004), the court observed:
The Federal Circuit’s rationale for accepting copyright protection for the 10NES
program does not undermine our conclusion because the 10NES program was not
a “lock out” code in the same sense that the Toner Loading Program is. In Atari,
the data bytes of the 10NES program did not themselves do the “unlocking” of the
game console; the program, when executed, generated an arbitrary stream of data
that in turn enabled the console to function. That same data stream, the court con-
cluded, could have been produced by a number of alternate programs; for this rea-
son, the expression contained in the computer program did not “merge” with the
process. (“The unique arrangement of computer program expression which gener-
ates that data stream does not merge with the process so long as alternative ex-
pressions are available. In this case, Nintendo has produced expert testimony
showing a multitude of different ways to generate a data stream which unlocks the
NES console.”) (citations omitted) (emphasis added).

In Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510, 1524 n.7 (9th Cir. 1992), the
court observed:

We therefore reject Sega’s belated suggestion that Accolade’s incorporation of the
code which “unlocks” the Genesis III console is not a fair use. Our decision on this
point is entirely consistent with Atari v. Nintendo, 975 F.2d 832 (Fed. Cir. 1992).
Although Nintendo extended copyright protection to Nintendo’s 10NES security
system, that system consisted of an original program which generates an arbi-
trary data stream “key” which unlocks the NES console. Creativity and originality
went into the design of that program. See id. at 840. Moreover, the federal circuit
concluded that there is a “multitude of different ways to generate a data stream
which unlocks the NES console.” Atari, 975 F.2d at 839. The circumstances are
clearly different here. Sega’s key appears to be functional. It consists merely of 20
bytes of initialization code plus the letters S-E-G-A. There is no showing that
there is a multitude of different ways to unlock the Genesis III console.

643. Atari, 975 F.2d at 840.
644. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 115 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 463

Nintendo’s 10NES program contains more than an idea or expres-
sion necessarily incident to an idea. Nintendo incorporated within the
10NES program creative organization and sequencing unnecessary to
the lock and key function. Nintendo chose arbitrary programming in-
structions and arranged them in a unique sequence to create a purely
arbitrary data stream. This data stream serves as the key to unlock the
NES. Nintendo may protect this creative element of the 10NES under
copyright. External factors did not dictate the design of the 10NES pro-
gram. Nintendo may have incorporated some minimal portions of the
program to accommodate the microprocessor in the NES, but no exter-
nal factor dictated the bulk of the program. Nor did Nintendo take this
program from the public domain.645

 In its analysis the Federal Circuit agreed with the district court that
the unprotectable idea or process is the generation of a data stream to
unlock a console.646 Both the district court and the Federal Circuit
Court agreed that the unique sequence of instructions used to create the
arbitrary data stream is protectable.647 Given that Atari wrote a differ-
ent program to create the arbitrary data stream used by Nintendo, the
only logical conclusion is that Ninth Circuit’s ruling entails protection of
the arbitrary data stream. The court supported its finding by referring
to expert testimony that there were “a multitude of different ways to
generate a data stream which unlocks the NES console.” (emphasis ad-
ded). This statement is correct in the sense that theoretically there are a
large number of data streams that will work as an unlocking protocol
provided both the sender and the receiver have agreed on the particular
data stream to be used as the key. However, if a console is expecting
only one particular data stream, or if the console is expecting a data
stream with certain characteristics, then only that particular data
stream or those data streams having those expected characteristics will
function correctly. In such a situation, the data steam is a part of the
method of operation or merges with the method of operation for the car-
tridge/console system and the data stream should not be protected under
copyright. Neither the Federal Circuit nor the district court in this case
seems to have considered whether the NES unlocking system was a
method of operation, or whether the NES data stream was part of or
merged with a method of operation. As a result, those courts appear to
have granted de facto copyright protection to the method of operation for
unlocking the Nintendo NES console. Although Sega claims to be in ac-
cord with Nintendo, Sega takes a very different approach and has a very
different outcome. Lexmark, however, actually is in accord with
Nintendo, since Lexmark is a case where no other program could have

645. Id.
646. Id.
647. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 116 28-SEP-10 10:21

464 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

been written that would unlock a Lexmark printer. In Sega, the decision
was more focused on Accolade’s reverse engineering activities and the
fair use arguments of the respective parties, however, a necessary ruling
in Sega was that the unlocking sequence was not protected by copy-
right.648 In Lexmark, both the majority and dissenting opinions found
that merger occurred and that copyright protection should not be ex-
tended to the expression embodied in the unlocking mechanism.649

For these reasons neither Sega nor Nintendo provide any significant
guidance in understanding the scope of copyright protection for methods
of operation. In Sega, the focus is on fair use as a defense to allegations
of copyright infringement in connection with reverse engineering activi-
ties. The issue of protection for methods of operation was secondary and,
as such, did not receive significant attention from the court. In
Nintendo, the court seems to have missed the fact that the unlocking
system was a method of operation. The court also seems to have misun-
derstood the testimony of one of Nintendo’s expert witnesses. Accord-
ingly, the decision that the NES unlocking key and protocol should have
been protected is probably incorrect.

4. GPL “Viral” Effects and Dynamic Linking

This section will analyze whether a program being dynamically
linked to a GPL-licensed library is a derivative or infringing work of that
library and whether the viral provisions of the GPL are engaged. As de-
scribed in Section II.C, a dynamically linked ELF object file has a symbol
table containing the symbol names used by that program. Among these
symbol names will be any external symbols from any GPL-licensed li-
braries linked to the program. These symbols are components of the API
of those the GPL-licensed libraries. Unlike a statically linked program, a
dynamically linked program will not contain any object code from any
linked GPL-licensed libraries. However, the object code of a dynamically
linked program may contain non-literal elements that have been copied
from linked GPL-licensed libraries.

As with static linking, the derivative works analysis begins with a
consideration of the transformative requirement. Similar to static link-

648. Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510, 1552 (9th Cir. 1992). Unfor-
tunately, other than observing that Accolade copied Sega’s software solely to discover the
functional requirements for compatibility and that the Sega key appeared to be functional,
the court did not provide a specific rationale for denying copyright protection to the unlock-
ing key.

649. The majority held that the Toner Loading Program was not copyrightable,
Lexmark Int’l, Inc. v. Static Control Components, Inc., 387 F.3d 544 (6th Cir. 2004). The
dissent would have held that there was no copyright infringement because of the defense of
merger with a method of operation. Id. at 557 (Feikens, J., concurring in part and dissent-
ing in part).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 117 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 465

ing, the APIs or technical interfaces for an object library are in a form
that allows portions of those APIs or interfaces to be included in other
programs. The actual use of parts of those APIs or interfaces in a dy-
namically linked object code program will allow one program to pass exe-
cution from its own object code to the object code of the called library.
Accordingly, it seems reasonable to conclude that the transformative re-
quirement is met for dynamic linking because the copied material has
been adapted to allow it to fulfill a different objective. In one case, the
copied material is in a state that allows for its incorporation into other
programs for the creation of executable code. In the other case, the cop-
ied material is actually present in an executing program and it allows
control to be passed back and forth between different executing
processes.

Once the copied material has been identified and once it has been
determined that the transformative requirement has been met, the final
step in the derivative works analysis is to determine whether the copied
material represents a substantial copying of the pre-existing work. In
the case of technical interfaces and data structures, the analysis becomes
more difficult. First, the proper treatment of technical interfaces under
copyright law needs to be determined. To date, most cases have treated
technical interfaces as methods of operation without conducting any sig-
nificant analysis. In the one case that did consider the meaning of the
term “method of operation,” this term was given a very broad construc-
tion.650 Applying the construction given to this term in Lotus, it would
seem that the API of a dynamically linked library qualifies as a method
of operation. The API is the means by which a programmer operates or
accesses the underlying functionality contained in a dynamically linked
library.651 Additionally, without an API, a programmer would not be

650. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 815 (1st Cir. 1995). The First
Circuit Court of Appeals stated that it interpreted the term “method of operation” as used
in §102(b) to refer to “the means by which a person operates something, whether it be a car,
a food processor, or a computer.” Id. The court also observed that the Lotus command
hierarchy provided the means by which users control and operate Lotus 1-2-3. Id. Further,
the court observed that without the menu command hierarchy, users would not be able to
access and control or make use of the Lotus 1-2-3 functional capabilities. Id.

651. There is one difference between the Lotus fact setting and the hypothetical setting
for a dynamically linked library. Lotus dealt with human end users interacting with an
application program. For dynamically linked libraries the situation is different because
one program will be calling another program without direct end user action. However, it
appears this difference does not have any legal significance. First, there is no indication
that the Lotus court intended to limit its interpretation of the term method of operation to
situations involving human action. The language used by the Lotus court is probably a
function of the facts in that case (i.e. a human – computer interface). Second, if human
participation was a requirement, then the actions of computer programmers who choose to
invoke and use an API could potentially fulfill this requirement. In such a scenario, the
API programmers can be viewed as making a method of operation available for invocation,

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 118 28-SEP-10 10:21

466 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

able to operate or access the functionality contained within a dynami-
cally linked library. Furthermore, the main purpose of an API is to allow
programmers and other programs to operate or use the capabilities con-
tained within a particular dynamically linked library. Accordingly, it
seems reasonable to conclude that under the criteria set forth in Lotus,
an API or technical interface should qualify as a method of operation.

An examination of the dictionary meaning of the constituent words
of “method of operation” leads to a similar conclusion. The Merriam-
Webster Online Dictionary defines “method” as “a way, technique, or
process of or for doing something”; “a procedure or process for attaining
an object”; or “a systematic procedure, technique, or mode of inquiry em-
ployed by or proper to a particular discipline or art.”652 The same dic-
tionary defines “operation” as “a method or manner of functioning”;
“performance of a practical work or of something involving the practical
application of principles or processes”; or “any of various mathematical
or logical processes (as addition) of deriving one entity from others ac-
cording to a rule.”653 Other English and legal dictionaries have similar
definitions.654 An API has been variously defined as: “[a] set of stan-
dards or conventions by which programs can call specific operating sys-
tem or network services”;655 “[a] functional interface supplied by the
operating system or by a separately orderable licensed program that al-
lows an application program written in a high-level language to use spe-
cific data or functions of the operating system or the licensed
program”;656 “[a]n interface that is defined in terms of a set of functions
and procedures, and enables a program to gain access to facilities within
an application”;657 and “[a] language and message format used by an ap-

and the programmers who use an API within their programs actually select when that
method of operation is to be invoked (although the invocation typically occurs well after
development when a calling program is actually running). In this regard, the invocation of
an API is similar to the invocation of the macro reader facility in Lotus 1-2-3. In both
cases, the designers of the method of operation established a framework under which the
method of operation can be subsequently invoked in a machine-to-machine setting without
direct human action. Given that the First Circuit Court of Appeals considered the macro
reader facility and chose not to treat it any differently than the human – computer portions
of the Lotus 1-2-3 menu command hierarchy strongly suggests that the method of operation
test established in that case was not meant to be restricted to situations involving direct
human actions.

652. Merriam Webster Online Dictionary, Method, http://www.m-w.com/dictionary/
method (last visited Apr. 26, 2009).

653. Merriam Webster Online Dictionary, Operation, http://www.m-w.com/dictionary/
operation (last visited Apr. 26, 2009).

654. See, Stacey H. King, Are We Ready to Answer the Question?: Baker v. Selden, The
Post-Feist Era, and Database Protections, 41 J.L. & TECH. 65 (2001).

655. WEBSTER’S NEW WORLD COMPUTER DICTIONARY 24 (9th ed. 2003).
656. IBM DICTIONARY OF COMPUTING 28 (10th ed. 1994).
657. A DICTIONARY OF COMPUTING 19 (Oxford University Press 5th ed. 2004).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 119 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 467

plication program to communicate with another program that provides
services for it.”658In United States v. Microsoft Corp., an API was charac-
terized as “synapses at which the developer of an application can connect
to invoke pre-fabricated blocks of code in the operating system. These
blocks of code in turn perform crucial tasks, such as displaying text on
the computer screen.”659 As can be seen from these definitions, an API is
a specific, structured way of accessing or invoking software capabilities.
Based on these definitions, it is difficult to characterize an API as any-
thing other than a “way, technique or process for doing something,” “a
systematic procedure, technique, or mode of inquiry employed by or
proper to a particular discipline or art,”660 or “any of various mathemati-
cal or logical processes (as addition) of deriving one entity from others
according to a rule.”661 Hence, an examination of the dictionary mean-
ing of the constituent words of “method of operation” and typical indus-
try definitions for application programming interfaces suggests that
APIs are methods of operation.

As demonstrated in the case law review, there seem to be at least
three distinct approaches to determining the scope of copyright protec-
tion for interfaces/methods of operation. The first approach is that taken
by the First Circuit in Lotus v. Borland, in which that court held that
copyright protection is denied to any copyrightable expression that is a
necessary part of a method of operation. The second approach is that
taken by the Tenth Circuit in Mitel v. Iqtel, in which that court would
grant copyright protection to certain subject matter notwithstanding the
fact that such subject matter may be embodied within a method of opera-
tion at a higher level of abstraction. Finally, there is the approach taken
by the Sixth Circuit in Lexmark v. Static Control, in which the majority
applied the merger and scènes à faire doctrines to determine issues of
copyrightability as well as substantial similarity, while the minority
would only have applied these doctrines as a defense during the substan-
tial similarity analysis. Under the majority approach in Lexmark, if cer-
tain expression merges with a method of operation, then copyright will
not subsist in that expression. Under the minority approach, copyright
can subsist in expression that merges with a method of operation (pro-
vided the originality requirement is met), but merger may be used as a
defense against an allegation of infringement when the expression is
used in the context of the method of operation.

The scope of protection for interfaces/methods of operation has also
been considered by the Eleventh Circuit. However, the Eleventh Circuit,

658. ALAN FREEDMAN, THE COMPUTER GLOSSARY: THE COMPLETE ILLUSTRATED DICTION-

ARY 11 (9th ed. 2001).
659. United States v. Microsoft Corp., 84 F. Supp. 2d 9, 12 (D.D.C 2000).
660. Merriam Webster Online Dictionary, Method, supra note 652.
661. Merriam Webster Online Dictionary, Operation, supra note 653.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 120 28-SEP-10 10:21

468 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

while tending towards a Mitel-like scope of protection, does not appear to
have adopted a definitive position.

Given that there seems to be three different approaches for deter-
mining the scope of protection for expression embodied within a method
of operation, the next question is whether these approaches can lead to
different results when applied to dynamic linking. The answer to this
question appears to be yes. Under the Lotus v. Borland approach the
fact that expression may be embodied in a method of operation is imma-
terial. The initial inquiry to be made by a court is whether a particular
technical interface is a “method of operation.” If so, then no further in-
quiry is required because under §102(b) any expression embodied in a
method of operation that is necessary for its use is denied copyright pro-
tection. Accordingly, under the Lotus approach the use of an application
programming interface from a GPL-licensed library should not engage
the viral provisions of the GPL. As discussed earlier, the viral provisions
of the GPL should not be engaged unless a program uses material from a
GPL-licensed library sufficient to make that program a derivative or in-
fringing work of the library. If unprotected subject matter is used, that
subject matter cannot make a linking program a derivative or infringing
work of a library it is calling.

A subsequent work will become a derivative or infringing work of a
pre-existing work if that subsequent work has copied sufficient protect-
able expression from the pre-existing work to make it substantially simi-
lar to the pre-existing work. This comparison is qualitative rather than
quantitative, and the copying of a small but significant portion of a pre-
existing work can support a finding of substantial similarity. A key
point about the substantial similarity test is that it is based only on the
copying of protectable subject matter. When a calling program uses an
API to access functionality provided by a GPL-licensed library, the
source code of that program will contain the symbols, data structures,
function calls and procedure calls needed to allow the applicable compil-
ers and linkers to create object code files that can pass control back and
forth at run-time. The object code version of the calling program will
similarly contain the necessary symbols and information to allow the op-
erating system to dynamically link the calling program to the called
GPL-licensed library so that execution can be passed back and forth be-
tween the calling program and the library. Under Lotus, an API is al-
most certainly a method of operation. Once an API is classified as a
method of operation, the analysis is very straightforward – copyright
protection is denied under §102(b) to those portions of the API that are
necessary for its use, and that subject matter cannot be used as a basis
for a finding of substantial similarity.

However, the exclusion of expression contained within an API used
to call a dynamically linked library does not conclude the substantial

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 121 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 469

similarity analysis. It is still possible that other material may have been
copied from a linked GPL-licensed library that can support a finding of
substantial similarity. Unlike static linking, none of the code from a dy-
namically linked GPL-licensed library is actually copied into a calling
program. Nonetheless, the substantial similarity test can still be satis-
fied through copying of non-literal elements of a dynamically linked li-
brary. The most likely source of such non-literal expression would be the
data structures used in a GPL-licensed library that must also be used in
a calling program. Baystate suggests that the expressive choices made in
selecting data structure names and arrangements are not copyrightable.
This conflicts with the findings in Positive Software, a case that seems to
have been decided on much sounder copyright principles. There are also
numerous other cases that have held that data structures can be pro-
tected as non-literal elements of a computer program.

Therefore, it seems likely that the copying of data structures from a
GPL-licensed library can support a finding of substantial similarity –
provided that such copying meets the requisite qualitative threshold and
further provided that copyright protection for those data structures is
not denied because of any limiting doctrines. When a program calls a
GPL-licensed dynamically linked library, the first potentially relevant
limiting doctrine is §102(b). If a data structure is part of an API and
hence part of the method of operation for a dynamically linked library,
then under a Lotus-like analysis any expression embodied in that data
structure that is necessary for the use of the API should not be protected
by copyright because to do so would mean that the method of operation
could not be used without infringing that copyright. The use of data
structures within an API is extremely common and arises most fre-
quently when a parameter in a function call is specified to be a particular
data structure. Under a Lotus-like approach the use of potentially ex-
pressive data structures within an API for the purpose of invoking a
method of operation should not give rise to copyright infringement.
However, if a data structure is used within an API, it is common for that
data structure to be used in other parts of a calling program to allow the
calling program to obtain the full intended benefit of the capabilities pro-
vided through the API. This raises a question about how these other
uses should be treated. This question did not arise in Lotus and hence
was not considered by that court. However, it is possible to examine the
principles enunciated in Lotus to predict how this issue might have been
resolved.

The first question to consider is whether §102(b) precludes protec-
tion of expression used within a method of operation when that expres-
sion is used in other parts of a calling program for other purposes. The
answer to this question appears to be no. The rationale for §102(b) and
for its application in Lotus was to prevent copyright from being used to

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 122 28-SEP-10 10:21

470 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

provide a de facto monopoly over ideas and over the various manifesta-
tions of ideas such as procedures, processes, systems and methods of op-
eration. If the expressive parts of a method of operation are used
elsewhere in a calling program, these uses will need to be examined to
determine whether copyright protection in these instances would pose
the same threat as that addressed by §102(b). If these other uses cannot
create a de facto monopoly over a method of operation or some other cate-
gory covered by §102(b), then the underlying rationale for the application
of §102(b) will not exist. Therefore it would appear that copyright protec-
tion is available for expression used within a method of operation when
that expression is used in other parts of a program for purposes unre-
lated to the method of operation. That being said, a court applying this
approach should give reasonably wide latitude for uses that are related
to the use of a method of operation. For example, if a particular proce-
dure is intended to return a result via a parameter that is a complex data
structure, it is reasonable to assume that the calling program will utilize
that result in other contexts. In such a case, a calling program might
display the result to a user, might perform some subsequent processing
on the result, or might store the result in a data file to allow a user to
subsequently view the result or perform additional processing. Merely
allowing a method of operation to be invoked is of little use unless other
actions and/or operations that flow naturally from the use of that method
of operation are also permitted. Accordingly, if the purpose of §102(b) is
to be fulfilled, these related uses should not support a finding of copy-
right infringement. If copyright protection is provided in these situa-
tions, then the effect will be to provide the de facto monopoly that §102(b)
sought to avoid because only the developer of a method of operation will
be able to make full subsequent use of its functionality. Accordingly,
§102(b) should apply to actions or operations that are reasonably con-
nected to the use of the functionality provided by a method of operation.
However, while reasonable latitude should be given to allow full ex-
ploitation of a method of operation, uses that are not reasonably related
to the use of that method of operation should still support a finding of
copyright infringement.

If §102(b) is not applicable, then the next issue to consider is origi-
nality. There are two aspects of originality that will need to be consid-
ered. The first is whether a data structure meets the copyright threshold
for originality. As articulated in Feist, this standard is very low and re-
quires only that there is some “creative spark.” In most cases this very
low threshold will be met. However, there will undoubtedly be some in-
stances where a very minimal data structure will not meet this thresh-

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 123 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 471

old.662 From a practical perspective, the more interesting aspect of
originality is the requirement for the subject matter not to have been
copied from another source. Often a requirement or desire for compati-
bility with other software will dictate the use of data structures from
other sources such as public standards or other non-GPL licensed
software.663 In these cases, the copied data structures will not be origi-
nal to the GPL-licensed library using them and this material cannot be
used to establish substantial similarity or infringement. This result is
very important because there are literally hundreds if not thousands of
packages built on data structures developed in conjunction with the
UNIX operating system and the various communications protocols sup-
ported by that operating system.

Therefore under Lotus the use of third-party defined data structures
combined with the ability to use APIs (methods of operation) means that
theoretically there should be a reasonably broad ability to dynamically
link to and interoperate with GPL-licensed libraries without engaging
the viral provisions of the GPL. However, because Lotus is currently
only binding in the First Circuit, and because any successful commercial
software product will be licensed throughout the entire United States,
the jurisprudence in other circuits must be examined to determine
whether dynamic linking to a GPL-licensed library involves significant
risk.

The next circuit to consider is the Sixth Circuit and the analytical
approach set forth in Lexmark v. Static Control. The key opinions in this
fragmented decision are the majority opinion written by Justice Sutton
and the partially dissenting, partially concurring opinion written by Jus-
tice Feikens. Both opinions are worth considering since each of them
discusses matters relevant to the scope of protection for methods of
operation.

The majority and minority opinions in Lexmark each use the merger
doctrine and, to a lesser extent, the scènes à faire doctrine.664 It is easier
to consider the minority opinion first since the reasoning in that opinion
is clearer. Justice Feikens observed that there is a circuit split about
whether merger acts as a bar to copyrightability or whether it is simply a

662. For example, a data structure that mirrored the telephone white pages listings
considered in Feist in which each individual entry contained a name, address and tele-
phone number, would probably not have the necessary creative spark for copyright
protection.

663. For example, GPL-licensed software designed to provide email functionality may
use data structures copied from one or more RFCs that specify various email standards
such as Simple Mail Transfer Protocol (RFC 821) or Post Office Protocol – Version 3 (RFC
1939).

664. Lexmark Int’l, Inc. v. Static Control Components, Inc., 387 F.3d 522 (6th Cir.
2004).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 124 28-SEP-10 10:21

472 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

defense to particular types of infringement.665 Justice Feikens also ob-
served that the choice of one approach over the other is important and
illustrated this point through an example involving a copyrightable
poem.666 In one part of the example, the poem is used as a password or
lockout code and is copied solely for those purposes.667 In the other part
of the example, the same poem is copied and used as part of a book of
poetry.668 Justice Feikens states that when the poem is used as a pass-
word or lockout code (i.e. as a necessary part of a method of operation),
the poem should merge with the method of operation and the merger
defense should be available to anyone who copies the poem for that
use.669 When the same poem is copied and used in a book of poetry, even
though the poem was originally created and used as a lockout code, Jus-
tice Feikens states that the defense of merger should not be available.670

This result can only be achieved if merger is applied as a defense to in-
fringement and not in an initial determination about copyrightability. If
merger is used to determine copyrightability, then copyright will be de-
nied in all circumstances and the use of the copied poem in a book of
poetry will not be infringing. Under the Feikens approach, an expressive
part of a method of operation may not be protected by copyright when
used in the context of a method of operation, but if that expression is
used in other contexts then it may be protected.

The approach taken by the majority in Lexmark is not as clearly ar-
ticulated as that of Justice Feikens. In the majority opinion, Justice Sut-
ton ruled that the district court had erred in three ways.671 First, the
district court determined copyrightability incorrectly by simply examin-
ing whether a particular work could have been put together in a number
of different ways.672 Justice Sutton stated that a court must examine
alternative ways of putting a work together and determine whether they
are feasible in the given setting.673 In particular, Justice Sutton stated
that the idea-expression divide and the accompanying principles of
merger and scènes à faire inform both the substantial similarity test and
the copyrightability test.674 The second error that Justice Sutton identi-
fied flowed from the first error. Given the mistaken approach taken by
the district court, the majority found that the constraints on the Toner

665. Id. at 556-57 (Feikens, J. concurring in part and dissenting in part).
666. Id. at 557.
667. Id. at 558.
668. Id.
669. Id.
670. Lexmark Int’l, 387 F.3d 522 at 558 (Feikens, J. concurring in part and dissenting in

part).
671. Lexmark Int’l, 387 F.3d at 537-42.
672. Id. at 537.
673. Id. at 537-38.
674. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 125 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 473

Loading Program needed to be reconsidered.675 Finally, the majority
held that the district court erred in assessing whether the Toner Loading
Program functioned as a lockout code.676 This error is the most signifi-
cant one when considering copyright protection for methods of opera-
tion.677 Unfortunately, the majority did not definitively state whether
the Toner Loading Program was uncopyrightable because merger with a
method of operation acts as a bar to copyrightability or because merger is
a defense to an allegation of copyright infringement.678This lack of clar-
ity is frustrating given the statements made by the majority earlier in
the decision about merger and scènes à faire being relevant at both the
copyrightability phase and the substantial similarity phase of the in-
fringement test.679 The failure by the majority to definitively state its
position on this issue does not affect an analysis of the use of expressive
parts of an API for calling dynamically linked functions. However, it
does affect an analysis of the use of expressive parts of an API in other
circumstances.

The approach taken by the Sixth Circuit appears to provide a level of
protection similar to that under Lotus. Under the minority approach,
the use of potentially copyrightable expression in a method of operation
will not support a finding of substantial similarity or infringement be-
cause the defense of merger with a method of operation is available.
Since there can be no substantial similarity, a calling program cannot
become a derivative or infringing work of a GPL-licensed library simply
by invoking a procedure defined in its API. However, while Justice
Feikens was very clear that a copyrightable expression that merges with
a method of operation will not be protected in that context, if that expres-
sion is used in other contexts it can be protected. Accordingly, if expres-
sive parts of the API of a GPL-licensed library are used in other parts of
a calling program in contexts unrelated to the use of the API, those uses
can potentially support a finding of substantial similarity and infringe-
ment. This is possible under the Feikens approach because merger does

675. Id. at 539.
676. Id. at 541.
677. Lexmark Int’l, 387 F.3d at 541.
678. Id. at 542. On this issue, the majority cryptically said, “[o]n this record, pure com-

patibility requirements justified SCC’s copying of the Toner Loading Program.” Id.
679. Id. at 544. The majority made this final statement:

For like reasons, Judge Feikens is correct that a poem in the abstract could be
copyrightable. But that does not mean that the poem receives copyright protection
when it is used in the context of a lock-out code. Similarly, a computer program
may be protectable in the abstract but not generally entitled to protection when
used necessarily as a lock-out device. Id.

The phrase “not generally entitled to protection” in this passage is ambiguous and it is not
clear whether this means the program is not copyrightable or that in certain circumstances
merger or some other doctrine may be available as a defense to an allegation of copyright
infringement.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 126 28-SEP-10 10:21

474 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

not extinguish copyright. Therefore, use of such expression in other
parts of a program not related to the use of the API can support a finding
of substantial similarity because the merger defense will not apply. In
these situations, the viral provisions of the GPL can be engaged.

As discussed above in the Lotus analysis, expression within an API
will generally need to be used in other parts of a calling program to fully
exploit the capabilities provided by the API. Such uses should not be
viewed as uses in another context, and, for the purpose of a Feikens-like
analysis, the defense of merger with a method of operation should still be
available to permit full exploitation of the capabilities provided by the
API.680 The merger defense should only be denied for uses that are com-
pletely unrelated to the exploitation of the API being invoked.

Therefore the approach taken by the minority in Lexmark is similar
to Lotus in that expression embodied in a method of operation cannot be
used to support a finding of substantial similarity and infringement. In
Lotus, the court used §102(b); in Lexmark, Justice Feikens used the de-
fense of merger with a method of operation. The Feikens approach dif-
fers from Mitel because the Tenth Circuit will protect copyrightable
expression notwithstanding the fact that such expression may be embod-
ied in a method of operation at a higher level of abstraction.681 The mi-
nority approach in Lexmark and the Mitel approach are similar in that
both allow copyright to subsist in the expressive aspects of a method of
operation. However, in Lexmark, the availability of merger means that
copyright will not be enforced to the extent any expression is needed for

680. Id. at 558 (Feikens, J. concurring in part and dissenting in part). Justice Feikens
said of the merger defense “Defendant can only claim this defense to infringement if it uses
the TLP to interface with the Lexmark printers at issue, and if it is a necessary method of
operation of the machine.” Id. Given this language, it is not clear whether Justice Feikens
would allow the merger defense for ancillary uses of protectable expression within an API.
(It is also unclear how Justice Feikens would handle a situation involving a program with
two methods of operation – as was the case in Lotus. If there are two methods of operation
for a program, then it is possible that neither will be deemed “necessary” because of the
existence of the other.) There is no doubt that use of an API is necessary for the use of a
dynamically linked library (there is no other way to programmatically invoke the library).
However, a question arises about what is meant by using the expression to interface with
the library. This requirement could be read narrowly to mean only those uses that are
strictly required to invoke the functionality of the library or it could be read broadly to
mean the ability to fully utilize the functionality and results provided by the library. This
issue is particularly important for data structures that are an inherent component of an
API and that are used to transmit and receive data between a calling program and a called
library. If full use of a given method of operation is to be allowed, then it appears that use
of parts of an API beyond simple invocation will need to be permitted.

681. Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366, 1372 (10th Cir. 1997).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 127 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 475

the use of a method of operation.682 Finally, both the minority in
Lexmark and the court in Mitel will protect expression embodied in a
method of operation when that expression is used in other contexts.683

The scope of protection the majority in Lexmark accords to the API
of a GPL-licensed library is similar to that provided by the minority.
However, because the majority did not state definitively whether merger
is a bar to copyright or simply a defense to a claim of copyright infringe-
ment, the exact bounds of the protection the majority would provide are
not as clear as that for the minority. Like the Feikens approach, the
majority would not allow expression embodied in a method of operation
to be used to support a finding of substantial similarity. Accordingly,
under the majority approach a calling program will not become a deriva-
tive or infringing work of a GPL-licensed library simply by invoking a
function within its API and consequently the viral provisions of the GPL
should not be engaged. However, since the majority did not explicitly
state whether merger is a defense to a claim of copyright infringement or
a bar to copyrightability, it is not clear whether use of these parts of an
API in other parts of a calling program will support a finding of substan-
tial similarity. If the majority intended merger with a method of opera-
tion to serve as a bar to copyright, then the use of expressive portions of
an API in other contexts within a calling program will not engage the
viral provisions of the GPL. If the majority did not intend merger to act
as a bar to copyrightability, but instead as a defense to an allegation of
copyright infringement, then the use of such expression in other contexts
can engage the viral provisions of the GPL. In this latter case, the scope
of protection accorded to expression embodied in a method of operation is
the same as that provided by the minority.

The final circuit-specific approach to the scope of protection for
methods of operation is that established by the Tenth Circuit whose ana-
lytic approach is set forth in Mitel v. Iqtel. Of the three main positions on
the scope of protection for methods of operation, Mitel is perhaps the eas-
iest to analyze. Unfortunately, in practice, Mitel is probably the most
difficult to apply.

As discussed earlier, the Tenth Circuit rejected the approach taken
by the First Circuit in Lotus.684 The Tenth Circuit did not agree with
the First Circuit’s decision not to use the Abstraction-Filtration-Compar-

682. When invoking an API, it appears that the merger defense will almost always be
available because the way in which various functions are made available through an API is
strictly specified and these functions will not work unless these conventions are followed.

683. In Mitel, this result flows naturally from the court’s willingness to protect expres-
sion even when it is embodied in a method of operation at a higher level of abstraction. See
Mitel, 124 F.3d at 1372.

684. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 128 28-SEP-10 10:21

476 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

ison method as an analytical framework.685 Furthermore, the Tenth
Circuit did not agree with the First Circuit’s conclusion that copyright
protection for otherwise protectable expression embodied in a method of
operation at a higher level of abstraction is excluded under §102(b).686

Instead, the Tenth Circuit chose to use the Abstraction-Filtration-Com-
parison method, and further concluded that §102(b) does not extinguish
the protection accorded a particular expression of an idea merely because
that expression is embodied in a method of operation at a higher level of
abstraction.687

The Tenth Circuit’s approach allows expression within a method of
operation to be protected under copyright. Therefore, if a calling pro-
gram invokes the expressive portions of an API, then the use of that ex-
pression may make the calling program substantially similar to the
called library. Therefore, a program calling a GPL-licensed library may
become a derivative or infringing work of that library and thereby en-
gage the viral provisions of the GPL.

As a practical matter, the Mitel test will be difficult for commercial
software developers to use. There are a number of inherent uncertain-
ties in the test that make it unlikely to produce definitive answers. The
first aspect of the Mitel test that makes it difficult to apply is the use of
the Abstraction-Filtration-Comparison test as an analytical framework.
The Abstraction phase is particularly important because it establishes
the general framework for separating idea from expression. In the con-
text of the Mitel test, the Abstraction phase takes on added importance
because the Tenth Circuit is willing to protect expression that may be
embodied in a method of operation at a higher level of abstraction.

Unfortunately, the Abstraction phase of the Abstraction-Filtration-
Comparison test is the least well defined, and, as a result, is the most
difficult to apply and the most prone to disagreement.688 Many courts
applying the Abstraction-Filtration-Comparison test have either skipped
the Abstraction phase or provided virtually no analysis for the chosen
level of abstraction.689 As a result, it will be very difficult for commercial
software developers to determine whether a method of operation is un-
available because it is at “too high” a level of abstraction.

The difficulty with the Mitel test is that once it becomes possible to
protect expression within a method of operation it becomes very difficult

685. Id.
686. Id.
687. Id.
688. Peter Pan Fabrics, Inc. v. Martin Weiner Corp., 274 F.2d 487, 489 (2nd Cir. 1960)

(“Obviously, no principle can be stated as to when an imitator has gone beyond copying the
‘idea’, and has borrowed its ‘expression’. Decisions must therefore inevitably be ad hoc”).

689. See Bateman v. Mnemonics, Inc., 79 F.3d 1532 (11th Cir. 1996); and Mitel, 124
F.3d 1366 (10th Cir. 1997).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 129 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 477

for developers to identify expression that may attract this protection.
The combination of the Mitel test with the low originality threshold for
copyright protection will mean that most methods of operation will con-
tain at least some protectable expression. Under Mitel it is also more
likely that the use of data structures embodied in an API will support a
finding of substantial similarity. If the Mitel approach is widely adopted
it will still be possible to dynamically link to a library without making
the calling program a derivative or infringing work of that library. How-
ever, given the risks associated with the viral provisions of the GPL and
the difficulty in applying the Mitel test, if Mitel is generally adopted it
seems unlikely that many companies will take the risk of dynamically
linking their commercial programs to GPL-licensed libraries.

A potential exception may occur for GPL-licensed libraries imple-
menting third-party standards. In this special case, the API and data
structures and protocols will not be original to the GPL-licensed library
and the author of the library will have to have copied them from else-
where. In this situation, even under Mitel, invocation of this API and
use of the accompanying data structures and protocols cannot make a
calling program substantially similar to a dynamically linked GPL-li-
censed library. Under Mitel such an API and its accompanying data
structures and protocols will be filtered because they are not original. In
this situation, dynamically linking to such a GPL-licensed library cannot
make the calling program a derivative or infringing work of that GPL-
licensed library and hence, cannot engage the viral provisions of the
GPL.

Given that there are at least three different scopes of protection for
expressive portions of a method of operation, and also given that these
approaches can give rise to different outcomes, the potential conse-
quences of dynamically linking to a GPL-licensed library are currently
circuit specific.690 This leaves commercial software vendors in a difficult
position since any reasonably successful commercial product is going to
be licensed throughout the United States thereby giving a potential
plaintiff an ability to select the forum providing the broadest protection
to expression embodied within a method of operation – currently the
Tenth Circuit.

690. It is possible that different circuits might reach the same conclusion for a particu-
lar interface, but for different reasons. For example, under the First Circuit approach,
copyright might be denied because the subject matter in question was a method of opera-
tion to which the First Circuit will not extend copyright protection. If the same interface
was considered in the Tenth Circuit, the Tenth Circuit might be willing to protect expres-
sion in that interface, but might not do so for other reasons, such as a lack of originality
because the expression was copied from elsewhere or because the expression was so trivial
it did not meet the required copyright threshold.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 130 28-SEP-10 10:21

478 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

At this time it seems unlikely that the disagreement between the
various circuit courts will be resolved soon. The difficulty is that the eco-
nomics of open source, the potential risk to a commercial product, and
the types of resolutions the FSF typically seeks691 do not favor the occur-
rence of a test case. The main reason for using open source is to gain
access to high-quality software that can provide time-to-market advan-
tages. However, if the use of a particular open source package is going to
potentially: (1) compromise a company’s proprietary software product
through the threat of mandatory licensing under the GPL or loss of copy-
right protection under §103(a); (2) require litigation all the way to the
United States Supreme Court with the associated costs and uncertainty;
(3) alienate the open source community; and (4) cause years of consumer
fear, uncertainty and doubt about a product, then virtually every com-
pany is simply going to make the economically prudent choice and not
use GPL-licensed code. Instead, commercial software developers will ei-
ther write the required code themselves or select another open source
package licensed under a non-viral license. As will be discussed below,
the FSF’s views regarding dynamic linking to GPL-licensed code are
probably more reflective of the FSF’s preferred outcome than the likely
outcome under copyright law. Accordingly, the current lack of cases
dealing with the viral provisions of the GPL is probably not due to the
strength of the GPL or the FSF’s interpretation of copyright law, but
instead a matter of economic expediency and prudent decision-making.

5. Comparison to the FSF Position

For many years the FSF has stated in its online FAQ that, “[i]f two
modules are designed to run linked together in a shared address space,
that [sic] almost surely means combining them into one program.”692

More recently, the GPL v.3 has been drafted to include the defined term
“corresponding source,” which includes “the source code for shared li-
braries and dynamically linked subprograms that the work is specifically
designed to require, such as by intimate data communications or control
flow between those subprograms and other parts of the work.”693 The

691. Free Software Foundation, Frequently Asked Questions about the GNU Licenses,
http://www.gnu.org/licenses/gpl-faq.html (last visited Aug. 17, 2010).

692. Frequently Asked Questions about Version 2 of the GNU GPL, supra note 320.
693. Free Software Foundation, GNU General Public License, Version 3, June 29, 2007,

http://www.gnu.org/licenses/gpl-3.0.txt. This situation is the reverse of that considered in
this paper and the FSF seems to be saying that the viral provisions of the GPL extend to
any shared libraries called by a GPL-licensed program. As seen in the technical description
of dynamic linking, it would be unusual for a dynamically linkable library to be a derivative
or infringing work of a calling program since a dynamically linkable library typically does
not incorporate any protected expression from a calling program. It is unclear whether the
language in the definition of “corresponding source” represents a change in the FSF’s views

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 131 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 479

language in the FAQ is difficult to assess from a copyright perspective
since copyright law does not recognize the concept of “combining two
works into one.” Similarly, the language in the GPL v.3 is similarly diffi-
cult to assess because copyright law does not recognize the concept of
intimate data communications or flow control. The touchstone for copy-
right law is whether one work is substantially similar to another work.
Therefore, unless the GPL is intended to be a contract – which the FSF
explicitly maintains it is not then “combining two works into one” and
“by intimate data communications or control flow” must have some
meaning other than the simple dictionary definition of those words.

The most plausible meaning for the statements made by the FSF is
that they believe if two programs are designed to be dynamically linked
at run-time, the calling program is almost certainly a derivative work of
the library to which it is linking. However, a detailed examination of the
mechanics of dynamic linking and a review of the case law suggests that
this statement is overly broad. In the First and Sixth Circuits, the state-
ment is likely to be incorrect for programs that are simply calling dynam-
ically linked routines.694 If a calling program uses data structures
defined in a GPL-licensed library, and if those data structures are used
for activities beyond those reasonably related to the invocation of a dy-
namically linked routine, then the calling program may become a deriva-
tive or infringing work of that library. This, however, will only happen if
the data structures in question are protectable under copyright, an issue
that must be analyzed on a case-by-case basis. In particular, those data
structures must meet the copyright standard for originality and must
not being filtered by a limiting doctrine such as merger or scènes à faire.

In the Tenth Circuit, the FSF position on dynamic linking fares bet-
ter because the courts in this circuit are willing to protect expression
that may be part of a method of operation at a higher level of abstraction.
However, the FSF view that a calling program will “almost surely” be a
derivative work of a dynamically linked library remains overly broad be-
cause there will be many methods of operation that do not contain any
protectable expression. This is particularly so for GPL-licensed libraries
implementing third-party defined APIs with third-party defined data
structures. In these cases the API and the data structures cannot be
used to support a finding of substantial similarity and hence, cannot en-
gage the viral provisions of the GPL. As discussed earlier, when a calling
program dynamically links to an object library, none of the library’s ob-
ject code is copied into the calling program. Instead, only the symbol

on the scope of the viral provisions of the GPL or is instead an unintended consequence of
the newly added term.

694. See Lotus Dev. Corp. v. Borland Int’l, Inc. (Lotus V), 49 F.3d 807 (1st Cir. 1995),
aff’d by an equally divided court, 516 U.S. 233 (1996) (per curiam); Lexmark Int’l, Inc. v.
Static Control Components, Inc., 387 F.3d 522 (6th Cir. 2004).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 132 28-SEP-10 10:21

480 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

names used by the calling program are copied into its object file. In the
case of a GPL-licensed library that implements a third-party developed
standard, these symbol names will not be original to the GPL-licensed
library. When a calling program also uses data structures from a dy-
namically linked library, it is also possible that these data structures
may be embodied in the object code of that calling program on a non-
literal basis. However, once again, these elements will not be original to
a GPL-licensed library implementing a third-party developed standard,
and a calling program in such a circumstance cannot be a derivative or
infringing work of such a GPL-licensed library.

Overall, the position articulated by the FSF seems to be more reflec-
tive of their desired outcome than the results suggested by copyright law.
Current case law suggests that a calling program may become a deriva-
tive or infringing work of a GPL-licensed library to which it links, how-
ever, in many cases a calling program will not become a derivative or
infringing work of such a library. Each instance of dynamic linking will
need to be examined in detail to make this determination. In some cases
it will be possible to make a relatively definitive determination, while in
many other cases the outcome will be unclear.

E. GPL “VIRAL” EFFECTS AND INTER-PROCESS COMMUNICATION

The final type of program-to-program interaction that will be ex-
amined is inter-process communication. This section will examine
whether a client program exchanging messages with a GPL-licensed
server using a client-server protocol becomes a derivative or infringing
work of that GPL-licensed server thereby engaging the viral provisions
of the GPL.

In a client-server system, the server will define or select the manner
by which clients can request and receive services. This means the server
will either define or select the protocols, message types and data struc-
tures to be used when communicating with that server. The selected
protocols, messages types and data structures are usually defined in a
definitions or header file. Alternatively, if a server is implementing a
well-known service, such as HTTP or FTP, that server may select appro-
priate protocol and data structure definitions from a third-party defini-
tions or header file. In each case, the client software will be compiled
against the appropriate definitions or header file so the required proto-
cols, messages, and data structure definitions are available for use by the
client.

The copyright analysis of inter-process communication in a client-
server system is similar to the analysis for dynamic linking. The main
difference is that client and a server programs are not linked together at
run-time by the operating system. Instead, these programs must use

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 133 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 481

some other mechanism to establish run-time communication.695 In a
system that relies purely on inter-process communication, the only ele-
ments of a server that are embodied in a client will be non-literal. These
elements may include data structures, message formats, and protocol se-
quences. As with dynamically linked programs, no object code from a
GPL-licensed server needs to be included in a client program. Unlike
dynamic linking, in a pure messaging system the object code version of a
client program should not contain any symbols from a GPL-licensed
server with which it is communicating.696 Accordingly, inter-process
communication is somewhat easier to analyze than dynamic linking. For
inter-process communication, the key question is whether the various
protocols, data structures and message formats used to communicate
with a GPL-licensed server, and the manner in which those elements are
embodied in a client program, make that client program a derivative or
infringing work of the GPL-licensed server.

1. A Derivative Works Analysis For Inter-process Communication

A determination of whether a client program that communicates
with a GPL-licensed server is a derivative or infringing work of that
server is always going to be fact dependent. The first question to con-
sider is whether the copied material is recast, transformed, or adapted.
It seems relatively easy to conclude that the various protocols, data
structures, and message formats are transformed. When these elements
are in a definitions or header file, they are in a form that allows those
protocols, data structures, and message formats to be included in other
programs. Once embedded in those other programs, these protocols,
data structures, and messages formats, along with other information and
instructions, are used to allow a computer process to communicate with
another computer process. Accordingly, the copied material appears to
have been adapted to allow it to fulfill a different purpose. In one case,
the copied material is in a state that allows its incorporation into other

695. For example, by some mechanism for agreeing on the use of a particular port and
IP address.

696. It is possible to create a client-server system in which server defined symbols are
used in a client program. In such a scenario, the server may also provide its own library
routines that can be used to facilitate communication with that server. Any client wanting
to communicate with that server could link to these routines and use them when request-
ing services. Typically, these types of routines are used to format messages, send requests
and receive replies from a server thus removing the need for a calling program to under-
stand low-level details about communication with the server. In these cases, such routines
will either be statically or dynamically linked to the client program, and the appropriate
GPL analysis will be determined according to the type of linkage used. However, in a pure
inter-process communication case, there should be no dynamic or static linking to any GPL-
licensed code, instead there should only be an exchange of messages.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 134 28-SEP-10 10:21

482 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

programs. In the other instance, the copied material is actually used in
executing code.

After satisfying the transformative requirement, the final step in
the derivative works analysis is to determine whether the copied mate-
rial represents a substantial copying of the pre-existing work. This de-
termination is dependent on the scope of protection for client-server
protocols and their accompanying data structures. At first glance, inter-
process communication appears to be a method of operation. Unfortu-
nately, the cases dealing with methods of operation have generally not
provided significant guidance about the meaning of that term. The only
case to provide any guidance about the meaning of the term was Lotus.
In Lotus, the term “method of operation” was given a very broad mean-
ing.697 While there do not appear to be any cases dealing specifically
with protocols, other cases, such as Mitel, have treated similar technol-
ogy as a method of operation.698 Applying the Lotus criteria, it would
seem that client-server protocols can qualify as methods of operation. A
client-server protocol is the means by which a client program accesses or
requests services provided by a server.699 Without a client-server proto-
col, a programmer wanting to take advantage of the services provided by
a server would not be able to send requests or receive responses from
that server. The entire purpose of a client-server protocol is to allow
other processes to interact with a server to take advantage of the capabil-
ities provided by that server. Accordingly, it seems reasonable to con-
clude that under the Lotus criteria, a client-server protocol qualifies as a
method of operation.

An examination of the dictionary meaning of the constituent words
of the term “method of operation” leads to a similar conclusion. The Mer-
riam-Webster Online Dictionary defines “method” as: “a way, technique,
or process of or for doing something;” “a procedure or process for attain-
ing an object;” or “a systematic procedure, technique, or mode of inquiry
employed by or proper to a particular discipline or art.”700 The same
dictionary defines “operation” as “a method or manner of functioning,”
“performance of a practical work or of something involving the practical

697. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 815 (1st Cir. 1995), aff’d by an
equally divided court, 516 U.S. 233 (1996) (per curiam).

698. See Secure Services Tech., Inc. v. Time &Space Processing Inc., 722 F.Supp. 1354
(E.D. Va. 1989). This case dealt with certain variations to the T.30 protocol and copyright
protection was ultimately denied because of a lack of originality. Id. at 1363. In passing
the Court observed that “Copyright protection for the timing of electronic binary signals is
precluded by the copyright laws’ exclusion of ‘any idea, procedure, process, system, method
of operation, concept, principle or discovery.’ Timing is nothing more than the process by
which electronic signals are created, transmitted, received.” Id. at 1363 n.25.

699. VikontSolutions Corp., Glossary: Client-Server Protocol, http://www.vikont.com/
clients/glossary.htm (last visited Apr. 26, 2009).

700. Merriam-Webster Online Dictionary, Method, supra note 652.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 135 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 483

application of principles or processes;” or “any of various mathematical
or logical processes (as addition) of deriving one entity from others ac-
cording to a rule.”701 Other English and legal dictionaries have similar
definitions.702 A client-server protocol is variously described as, “the
manner in which clients request information and services from a server
and also how the server replies to that request,”703 and “[a] communica-
tion protocol between networked computers where the services of one
computer (the server) are requested by the other (the client).”704Hence,
an examination of the dictionary meaning of the constituent words of the
term “method of operation” and the typical industry meanings for the
term “client-server protocol” suggests that a client-server protocol is a
method of operation.

As discussed in Section II of this paper during the analysis of dy-
namically linked APIs, there seem to be three different ways of deter-
mining the scope of protection for methods of operation; these are the
approaches taken in Lotus, Mitel and Lexmark. As previously discussed,
it appears that the use of these approaches can lead to different results.

Under Lotus, the fact that expression may be embodied in a method
of operation is immaterial. The initial inquiry is whether a client-server
protocol is a “method of operation.” If so, no further inquiry is required
because under §102(b) any expression embodied in that method of opera-
tion that is required for its use will be denied copyright protection. Ac-
cordingly, under Lotus any expression embodied in a client-server
protocol that is required for its use will not contribute to a finding of
substantial similarity and hence, will not make a client program a deriv-
ative or infringing work of a server program with which it wishes to
communicate.

Under a Lotus-based approach, a client-server protocol will almost
certainly be found to be a method of operation. As previously discussed,
the First Circuit interpreted the term “method of operation” to refer to
“the means by which a person operates something, whether it be a car, a
food processor, or a computer.”705 The court further observed that with-
out the menu commands and menu command hierarchy, users would not
be able to access and control the Lotus 1-2-3 functional capabilities.706

The purposes served by the Lotus 1-2-3 menu commands and menu com-
mand hierarchy are very analogous to the purposes served by a client-
server protocol. The messages a server program is willing to receive and

701. Merriam-Webster Online Dictionary, Operation, supra note 653.
702. See King, supra note 654.
703. Client/Server Frequently Asked Questions, 2.6 What is Middleware?, http://

www.faqs.org/faqs/client-server-faq/ (last visited Apr.26, 2009).
704. VikontSolutions Corp., supra note 699.
705. Lotus Dev. Corp. v. Borland Int’l, Inc. (Lotus V), 49 F.3d 807, 815 (1st Cir. 1995).
706. Id.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 136 28-SEP-10 10:21

484 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

process are the means by which a client program accesses the functional-
ity provided by a server. Without a client-server protocol, client pro-
grams would not be able to access the capabilities made available by a
server. As discussed earlier, it is unlikely that the First Circuit intended
to restrict the term “method of operation” to those instances in which a
human operator is involved.

Accordingly, the fact that services are being requested by one pro-
gram from another is unlikely to change a Lotus-based analysis. Under
Lotus, once a particular client-server protocol is classified as a method of
operation, the analysis is straightforward – copyright protection is de-
nied under §102(b) for any expression embodied in that client-server pro-
tocol that is necessary for its use. This expression cannot be used as a
basis for substantial similarity. Hence, under a Lotus-based approach
communication with a GPL-licensed server should not engage the viral
provisions of the GPL.

This result, however, does not conclude the substantial similarity
analysis. It is still possible that other subject matter used to communi-
cate with a GPL-licensed server may support a finding of substantial
similarity. Inter-process communication is similar to dynamic linking in
that no object code is copied from the program with which the interaction
is occurring. However, the substantial similarity test can still be satis-
fied through the copying of non-literal elements. Once again, the most
likely type of non-literal expression that may be copied will be the data
structures used to describe the messages exchanged between a client and
server.

The use of data structures within a client-server protocol to ex-
change complex data is very common.707 In order to satisfy the substan-
tial similarity test, such data structures will have to be sufficiently
original and not denied copyright protection under any limiting doc-
trines. Under Lotus, the first limiting doctrine to consider is §102(b).708

If a particular data structure is part of a client-server protocol and hence
part of a method of operation, then under Lotus any expression embodied
in that data structure that is necessary for use of the method of operation
should not be protected by copyright. Therefore, under Lotus the use of
potentially expressive data structures within client-server messages
should not result in copyright infringement.

However, if a data structure is used within a client-server message
it is very common for that data structure to be used in other parts of a
client program. If such a data structure is used for purposes unrelated to

707. For example, in the case of the UNIX sockets protocol, the definition of a socket is
an integral part of that protocol and if use of the socket data structure was prohibited for
copyright reasons, then the ability to use the whole protocol would be compromised.

708. Lotus V. 49 F.3d at 815.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 137 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 485

communication with a server process or exploitation of the responses
provided by a server then those unrelated uses can potentially support a
finding of substantial similarity. The reason for this distinction is that a
prohibition on these uses will not prevent the use of the client-server
protocol and messaging system and thereby create a de facto monopoly
over the protocol and messaging system. However, a court should permit
a sufficiently broad range of uses of the data structures embedded in a
client-server protocol and/or messaging system to allow a client program
to receive the full benefit of the services provided by a server program.
Only uses that are not reasonably related to the receipt or use of server
responses should support copyright infringement.

The next issue to consider in determining whether the use of data
structures embedded in a client-server protocol can support a finding of
substantial similarity is originality. The originality requirement has two
aspects. The first is the requirement to meet the copyright standard for
originality as articulated in Feist.709 The originality standard is very
low and requires only that there is some “creative spark.”710 Many data
structures used in a GPL-licensed client-server protocol or messaging
system will meet this low standard. However, there undoubtedly will be
some minimal data structures that do not meet this standard.711

The more interesting aspect of originality is the requirement that
the subject matter must not been copied. There will be many data struc-
tures used in client-server protocols or messaging systems that have
been copied from elsewhere and these data structures will not be original
when used in subsequently-developed servers or protocols.712 A copied
data structure cannot be used to establish substantial similarity. This
result is very important because there are literally hundreds if not
thousands of packages built on the data structures defined by the UNIX
operating system and the various communications protocols used with
that operating system.

Thus, under Lotus there seems to be a reasonably broad ability to
exchange messages with GPL-licensed servers without engaging the vi-
ral provisions of the GPL. However, because Lotus is only binding in the
First Circuit, the approaches taken in other circuits must also be
considered.

The next approach to consider is that taken by the Sixth Circuit in

709. Feist Publications, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340 (1991).
710. Id. at 345.
711. Id. at 350 (“There remains a narrow category of works in which the creative spark

is utterly lacking or so trivial as to be virtually non-existent”).
712. For example, in the case of a server providing email capabilities, any data struc-

tures dealing with message formats or mailbox formats may simply be copied from existing
non-GPL licensed specifications or implementations.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 138 28-SEP-10 10:21

486 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

Lexmark.713 When applied to client-server protocols and associated mes-
saging systems, the tests enunciated by the Sixth Circuit lead to results
similar to those under Lotus. Under the Lexmark minority approach
when potentially copyrightable expression is used as a necessary part of
a method of operation that use will not be infringing because of the de-
fense of merger with a method of operation. In such a situation, since
there is no infringement, a client program cannot become a derivative
work of a GPL-licensed server by exchanging messages with that server.

However, the minority opinion in Lexmark makes it clear that copy-
rightable expression that is not protected in the context of a method of
operation may still be protected in other contexts.714 Accordingly, if ex-
pressive parts of a client-server protocol and messaging system are used
in other parts of a client program in contexts unrelated to the receipt of
services from a GPL-licensed server, those uses can support a finding of
substantial similarity, thus making a client program a derivative or in-
fringing work. Substantial similarity can arise from these non-related
uses because the minority in Lexmark held that merger with a method of
operation is a defense to infringement and does not act as a bar to
copyrightability.715 As discussed above in the Lotus analysis, expression
from a client-server protocol and its related messaging system will gen-
erally need to be used in other parts of a client program to allow the
client program to receive the full benefit of the services provided by a
server. These types of uses should not be viewed as uses in another con-
text, and the defense of merger with a method of operation should still be
available so that full exploitation of the capabilities provided by a server
is not affected.

The scope of protection for a client-server protocol and its related
messaging system under the majority approach in Lexmark is similar to
that under the minority approach. However, because the majority does
not appear to have taken a firm position on whether merger is a bar to
copyright or simply a defense to a claim of copyright infringement, the
exact bounds of protection are not as clear as those under the minority
approach. As with the minority approach, any expression included in a
method of operation and required for the use of that method of operation
will not be infringing.716 Accordingly, a client program should not be-
come a derivative or infringing work of a GPL-licensed server with which
it is communicating simply because of the exchange of messages.

713. Lexmark Int’l, Inc. v. Static Control Components, Inc., 387 F.3d 522 (6th Cir.
2004).

714. See Id. at 557-58.
715. Id. at 557.
716. Id. at 537-38.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 139 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 487

Furthermore, this type of communication should not cause the viral
provisions of the GPL to be engaged. However, since the majority opin-
ion does not make it clear whether merger is a defense or a bar to
copyrightability, it is not clear whether a client program’s use of the ex-
pressive aspects of a client-server protocol and its messaging system in
other contexts can support a finding of substantial similarity. In this
circumstance it is unclear whether a client program can become a deriva-
tive or infringing work of a GPL-licensed server with which it is
communicating.

If merger with a method of operation is a bar to copyright, then the
expressive portions of a client-server protocol and its related messaging
system can be used in other contexts and such uses will not cause a client
program to become a derivative work. If merger is a defense to an allega-
tion of copyright infringement, then use of protectable expression in
other contexts within a client program may cause that program to be-
come a derivative or infringing work and thus engage the viral provi-
sions of the GPL. If this is the case, then the scope of protection accorded
by the majority in Lexmark is the same as that envisioned by the
minority.

In summary, under Lexmark the simple exchange of messages with
a GPL-licensed server should not cause the viral provisions of the GPL to
become applicable to a client program. Under the minority approach,
other uses of expressive parts of a client-server protocol and messaging
system may engage the viral provisions of the GPL. In particular, data
structures defined in a GPL-licensed server that are an integral part of
the client-server protocol for that server pose a particular risk because
such data structures are commonly used for functions beyond simple
messaging. It seems reasonable to conclude that uses of expressive ma-
terial for the purpose of receiving the full benefit of the services provided
by a GPL-licensed server should be covered by the merger defense and
should not cause a client program to become a derivative work of a GPL-
licensed server with which it is communicating. However, this issue was
not considered in the minority opinion and accordingly this conclusion is
speculative. It is, however, clear that the use of expressive parts of a
client-server protocol and its related messaging system in contexts unre-
lated to the utilization of services provided by a GPL-licensed server can
support a finding of substantial similarity and can cause a client pro-
gram to become a derivative or infringing work of the GPL-licensed
server from which such expression is being copied. The question of
whether the use of expressive subject matter from a client-server proto-
col and related messaging system will support a finding of substantial
similarity will always be fact dependent.

In general, the results under the majority approach in Lexmark
should be similar to those under the minority approach. The main differ-

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 140 28-SEP-10 10:21

488 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

ence is the treatment of expressive material embodied in a method of
operation when that material is used outside the context of the method of
operation. Under the majority approach the treatment is more uncer-
tain. If the majority intended merger to act as a bar to copyrightability,
then the use of expressive material embodied in a client-server protocol
and related messaging system is unfettered and cannot support a finding
of substantial similarity. If the majority intended merger to act only as a
defense to copyright infringement then the scope of protection for expres-
sion embodied in a method of operation will be the same as that under
the minority approach. Neither the majority approach nor the minority
approach considered use of expression for the purpose of gaining the full
benefit of the services provided by a GPL-licensed server and accordingly
it is unclear under both approaches whether such uses will support a
finding of substantial similarity and engage the viral provisions of the
GPL.

The last circuit to consider is the Tenth Circuit’s analytical approach
as set forth in Mitel v. Iqtel. As discussed earlier, while the Mitel ap-
proach is conceptually easy to understand, in practice, it is perhaps the
most difficult to apply. Under Mitel, any expression within a method of
operation that is necessary for the use of that method of operation can
give rise to an enforceable copyright.717 This differs from Lotus and
Lexmark since neither case provides protection for expression required
for the use of a method of operation. Accordingly, it appears that under
Mitel it is possible for a simple exchange of messages to support a finding
of substantial similarity. Therefore, if a client program utilizes copy-
rightable expression from a client-server protocol or its related messag-
ing system, this use can potentially make the client program a derivative
or infringing work of a GPL-licensed server with which it is communicat-
ing, and thereby engage the viral provisions of the GPL.

As was the case with dynamic linking, the inherent uncertainty of
the Abstraction-Filtration-Comparison test will make it difficult for com-
mercial entities to draw definitive conclusions about the use of client-
server protocols and their related messaging systems. It appears that
there are likely to be significantly fewer unencumbered protocols and
messaging systems under the Mitel approach than under the approaches
taken by the First and Sixth Circuits. In the First and Sixth Circuits,
the mere exchange of messages with a GPL-licensed server cannot make
a client program a derivative work of a GPL-licensed server. This is not
the case in the Tenth Circuit where a simple exchange of messages can
potentially make a client program a derivative or infringing work of a
GPL-licensed server with which it is communicating. It is also more
likely under Mitel that the use of data structures embodied within a cli-

717. See Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366 (10th Cir. 1997).

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 141 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 489

ent-server protocol or related messaging system will support a finding of
substantial similarity.

If Mitel is ultimately accepted as the correct approach for determin-
ing the scope of protection for client-server protocols and messaging sys-
tems, there will still be situations where a client program will not
become a derivative or infringing work of a GPL-licensed server with
which it is communicating. However, given the potential severity of the
GPL-related consequences for a commercial software product and given
the uncertainty in applying the Mitel test, if Mitel becomes the accepted
approach for determining the scope of protection for methods of opera-
tion then it seems unlikely that many companies will risk using GPL-
licensed servers within their commercial offerings.

As with dynamic linking, however, there appears to be one situation
where this may not be the case. When a GPL-licensed server uses a
third-party defined protocol based on third-party defined data struc-
tures, the potential risk posed by the viral provisions of the GPL seems
to be significantly lower. In this special case, the client-server protocol
and data structures will not be original to the GPL-licensed server be-
cause the author of the GPL-licensed server will have copied them. In
this case, even under the Mitel approach, an exchange of messages with
this type of GPL-licensed server and the use of the related data struc-
tures cannot make a client program substantially similar to that GPL-
licensed server, and hence cannot make the client program a derivative
or infringing work of that GPL-licensed server or engage the viral provi-
sions of the GPL.

Given that there are at least three different ways of determining the
scope of copyright protection for methods of operation, and also given
that these different approaches can lead to significantly different results,
a determination about whether a client program is a derivative or in-
fringing work of a server with which it is communicating is circuit spe-
cific. As with dynamic linking, this places commercial software vendors
in a difficult position since any reasonably successful commercial product
is going to be licensed throughout the United States. Accordingly, a po-
tential plaintiff will be able to bring an action in the forum that provides
the broadest protection to client-server protocols and messaging systems
– currently the Tenth Circuit.

An examination of the case law in the various circuits, including
even the Tenth Circuit, suggests that there are certain types of inter-
process communication that should not engage the viral provisions of the
GPL. However, as with dynamic linking, the lack of uniformity between
the various circuit courts, the ambiguity of certain statements made by
the FSF about inter-process communication with GPL-licensed software,
the FSF’s reputation for enforcement, and the significant consequences
arising from an application of the GPL to a commercial software pro-

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 142 28-SEP-10 10:21

490 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

gram, probably means that commercial software developers are going to
be reluctant to test the boundaries of inter-process communications be-
tween proprietary software and GPL-licensed software.

2. Comparison to the FSF Position on Inter-process Communication

In its online FAQ, the FSF says the following about inter-process
communication:

By contrast, pipes, sockets and command line arguments are com-
munication mechanisms normally used between two separate pro-
grams. So when they are used for communication, the modules are
normally separate programs. But if the semantics of the communica-
tion are intimate enough, exchanging complex internal data structures,
that too could be a basis to consider the two parts as combined into a
larger program.718

First, it should be noted that the FSF acknowledges that inter-pro-
cess communication is less likely to engage the viral provisions of the
GPL than static or dynamic linking. Indeed, the first sentence seems to
indicate that it would be unusual for inter-process communication to en-
gage the viral provisions of the GPL. Unfortunately, the very next sen-
tence injects a high degree of uncertainty about the type of inter-process
communication that the FSF considers to be viral. In particular, trying
to determine what the FSF considers to be “too intimate” or “too com-
plex” is virtually impossible.

As discussed in the dynamic linking section, the terminology used by
the FSF is very difficult to analyze from a copyright perspective since
copyright law does not contemplate matters such as the intimacy of com-
munication or combining two parts into a larger program. If the FSF’s
statements about inter-process communication are converted into copy-
right law concepts, it appears they are likely to be over inclusive in some
situations and under inclusive in others. For example, the FSF state-
ments are probably over inclusive in situations where a client program
communicates with a GPL-licensed server using a highly complex proto-
col based on highly complex data structures that are not original to the
GPL-licensed server.719 Hypothetically, under the FSF criteria, the ex-
change of complex internal data structures and the high degree of inter-
action between the two programs would engage the viral provisions of
the GPL. However, under a copyright analysis, since the data structures
and protocol are not original to the GPL-licensed server, they cannot sup-
port a finding of substantial similarity and thus cannot make a client
program a derivative or infringing work of such a server. Accordingly,

718. Frequently Asked Questions about Version 2 of the GNU GPL, supra note 320.
719. Such a situation can arise if a GPL-licensed server is implementing capabilities

defined in an RFC.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 143 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 491

unless the FSF is relying on contractual principles,720 the FSF’s charac-
terization of the breadth of the viral provisions of the GPL for this type of
situation is overly broad. If the use of the term “internal data struc-
tures” is only meant to refer to original data structures defined within a
GPL-licensed program, then the FSF’s position is much more aligned
with the expected results under copyright law.

The statements made by the FSF can also be under inclusive in cer-
tain situations. In particular, a client may communicate with a server
using a protocol and data structures that are not particularly complex,
but still be a derivative or infringing work of that server. Such a protocol
and data structures may still be sufficiently original to meet the very low
standard required by copyright law.

In the Tenth Circuit, despite the fact that expression may be embod-
ied in a method of operation at a higher level of abstraction, that expres-
sion may still be protected and can potentially support a finding of
substantial similarity thereby rendering a client program a derivative or
infringing work of such a server. In this scenario, the FSF suggests that
the viral provisions of the GPL will not be engaged. However, a more
copyright-oriented approach suggests that in at least the Tenth Circuit
such a client program may be a derivative or infringing work that en-
gages the viral provisions of the GPL.

These examples demonstrate how the imprecise language used by
the FSF makes it difficult to predict FSF’s potential reaction to any par-
ticular instance of inter-process communication with GPL-licensed code.
The FSF could do the industry a great service by clarifying its state-
ments about the viral provisions of the GPL. In particular, it would be
very useful if the FSF articulated its views in terms recognized by copy-
right law with supporting case law references.

Absent any clarification from the FSF, a reasonable approximation
of the FSF’s position seems to be that a client program will engage the
viral provisions of the GPL if it uses non-trivial data structures and pro-
tocols in its communication with a GPL-licensed server. If this is the
case, then, at least in the First and Sixth Circuits, this position is likely
to be incorrect in situations where a client program is simply exchanging
messages with a GPL-licensed server. If a client program uses data
structures defined in a GPL-licensed server, and if those data structures
are used for functions beyond those reasonably related to the receipt of
services from that server, then the client program may be a derivative or
infringing work of that server. However, this determination will be fact
dependent and subject to the copyright originality requirement and
traditional limiting doctrines.

720. The FSF has consistently maintained it is not relying on contractual principles.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 144 28-SEP-10 10:21

492 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

In the Tenth Circuit, the FSF’s position on inter-process communica-
tion matches the results suggested by recent jurisprudence more closely.
This is because of the Tenth Circuit’s apparent willingness to protect ex-
pression that may be a part of a method of operation at a higher level of
abstraction. However, in every circuit there is a significant exception for
GPL-licensed servers that implement third-party defined protocols with
third-party defined data structures. In this special case, the FSF’s posi-
tion is once again overly broad. Since the viral provisions of the GPL
cannot apply to a client program no matter how intimate the communi-
cation and no matter how complex the data structures.

As with dynamic linking, each instance of inter-process communica-
tion will have to be examined in detail to determine whether communica-
tion with a GPL-licensed server will engage the viral provisions of the
GPL. As a general proposition, the statements made by the FSF with
respect to the viral effects of inter-process communication are more accu-
rate than the statements made by the FSF about dynamic linking. How-
ever, certain statements still appear to be overly broad.

IV. CONCLUSION

 There are significant philosophical and economic differences between
the free software community and the commercial software industry.
However, the shear volume of free software being developed, its increas-
ing use by significant user communities, and the increasing cost and
time-to-market pressures experienced by commercial software develop-
ers means that the temptation to use free software will be increasingly
difficult to resist.

Additionally, at a technical level, there are going to be more ways for
proprietary software and free software to interact. To date these techni-
cal interactions have generally involved: static linking, dynamic linking,
or inter-process communication. From a product perspective, the ability
to interoperate with free software can be very beneficial for a commercial
software vendor because its use can allow that developer to bring more
products to market, more quickly, at a lower cost, and with improved
quality. However, when commercial proprietary software interacts with
free software licensed under the GPL, there is a distinct possibility that
such use will be highly detrimental from a commercial perspective. In-
deed, certain interactions with GPL-licensed software can potentially
cause a commercial software vendor to lose the ability to control the ex-
ploitation of its product, and, as a result, waste millions of dollars spent
on research, development, and marketing, and even worse, forgo signifi-
cant future revenues. Even in a best-case scenario where the FSF is
willing to allow a developer to remove GPL-licensed code from its prod-
uct, the resulting development and replacement costs, plus the down-

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 145 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 493

stream costs of deploying the re-engineered product to existing
customers, can result in significant costs, delays and customer
disruption.

Because of the well-publicized risks associated with the use of or in-
teraction with GPL-licensed software, there has been much speculation
about the circumstances under which the viral provisions of the GPL
may be applicable. To date, there has been no consensus on this issue.
This paper has examined the three most common ways in which pro-
grams may interact from a detailed technical perspective. This paper
has also examined the recent jurisprudence in those areas of copyright
law that appear to be most relevant to these types of program-to-pro-
gram interactions. The principles set forth in this jurisprudence have
been applied to static linking, dynamic linking, and inter-process com-
munications with the goal of identifying those instances where the viral
provisions of the GPL are likely to be engaged and those instances where
they are unlikely to be engaged. In each case, these results were com-
pared to the positions articulated by the FSF.

The results of this exercise are mixed. An examination of the rele-
vant case law suggests there are two important areas of copyright law to
consider when determining the potential scope of the viral provisions of
the GPL. The first area relates to the scope of the derivative work right
as applied to computer software. The second area relates to the protec-
tion to be provided to expression embodied within a method of operation.
These areas of copyright law contain significant uncertainties.

In the case of the derivative works right, the uncertainty arises from
a general lack of case law dealing with the scope of this right and a spe-
cific lack of case law dealing with the scope of this right as applied to
computer software. In the case of methods of operation, the uncertainty
is caused by a significant disagreement between various circuit courts
about the proper scope of protection. The imprecise drafting of the GPL
and various statements made by the FSF and others in the free software
community further compound this uncertainty.

Unfortunately, at this time it seems unlikely that these issues are
going to be resolved soon. The economics of free software and the poten-
tial risk to a commercial product seem unlikely to generate a good test
case. A commercial software developer uses free software or open source
software to gain access to good quality software that can help provide
time-to-market advantages. In many cases, a commercial software de-
veloper will have a variety of free or open source packages to choose
from. In most cases, a commercial software developer will also have the
option of developing the necessary functionality in-house or licensing a
similar commercial product. Accordingly, most commercial software
vendors will simply make the economically prudent choice not to use
GPL-licensed software if the use of a free software package is going to

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 146 28-SEP-10 10:21

494 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

potentially: (1) compromise a company’s proprietary software product
through mandatory licensing under the GPL; (2) cause a loss of copyright
protection under §103(a); (3) require a company to litigate all the way to
the United States Supreme Court; (4) alienate the free software and
open source communities; and (5) cause years of consumer fear, uncer-
tainty, and doubt about the company’s now impugned product(s). All of
these factors suggest that no commercial software vendor will want to be
the test case for any GPL-related issues. Additionally, it appears un-
likely that the FSF is going to clarify its position on the scope of the viral
provisions of the GPL. Accordingly, the economics and practicalities of
free software use within commercial software products seem destined to
dictate a status quo of uncertainty.

Notwithstanding the uncertainty about the applicability of the viral
provisions of the GPL, there are a few conclusions that can be drawn
with some degree of confidence. First, static linking to a GPL-licensed
library will almost always engage the viral provisions of the GPL. Sec-
ond, dynamically linking to a GPL-licensed library does not necessarily
engage the viral provisions of the GPL under any current jurisprudence.
Certain circuits, most notably the First and Sixth Circuits, have ren-
dered decisions that suggest that dynamic linking should not engage the
viral provisions of the GPL in a wide range of circumstances. Other cir-
cuits, most notably the Tenth Circuit, have rendered decisions that can,
but depending on the particular API under consideration, do not necessa-
rily cause the viral provisions of the GPL to become applicable to a dy-
namically linking program. Further, in all circuits there seems to be a
commercially significant class of GPL-licensed software, namely
software that implements third-party defined APIs using third-party de-
fined data structures, which seems unlikely to engage the viral provi-
sions of the GPL.

Finally, the use of inter-process communication between a client and
a GPL-licensed server does not necessarily engage the viral provisions of
the GPL under any current jurisprudence. Once again, certain circuits,
most notably the First and Sixth Circuits, have rendered decisions that
suggest that exchanging messages with a GPL-licensed server should
never engage the viral provisions of the GPL. By contrast, in the Tenth
Circuit, exchanging messages with a GPL-licensed server can, but de-
pending on the particular client-server protocol, messaging system, and
data structures, does not necessarily cause the viral provisions of the
GPL to become applicable to a client program communicating with that
GPL-licensed server. As with dynamic linking, there seems to be a com-
mercially significant class of GPL-licensed servers, namely those servers
that implement third-party defined client-server protocols and messag-
ing systems using third-party defined data structures, which are un-

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 147 28-SEP-10 10:21

2010] THE CATHEDRAL AND THE BIZARRE 495

likely to engage the viral provisions of the GPL for client programs
communicating with those servers.

Beyond these rough heuristics, the one thing that can be said with
complete confidence about the viral effects of the GPL is that any com-
mercial software developer wanting to test the outer boundaries of the
GPL will be taking a significant risk that may lead to significant adverse
consequences. Further, the more a program interacts with free software,
the greater the chance that such use will be challenged; the greater the
cost of defending or undoing such use will be; and the greater the poten-
tial intellectual property, licensing, and commercial consequences will
be.

\\server05\productn\S\SFT\27-3\SFT303.txt unknown Seq: 148 28-SEP-10 10:21

496 JOURNAL OF COMPUTER & INFORMATION LAW [Vol. XXVII

	The Cathedral and the Bizarre: An Examination of the "Viral" Aspects of the GPL, 27 J. Marshall J. Computer & Info. L. 349 (2010)
	Recommended Citation

	tmp.1382067692.pdf.zP02H

