
UIC Law Review UIC Law Review

Volume 28 Issue 1 Article 3

Fall 1994

Legitimizing Decompilation of Computer Software under Legitimizing Decompilation of Computer Software under

Copyright Law: A Square Peg in Search of a Square Hole, 28 J. Copyright Law: A Square Peg in Search of a Square Hole, 28 J.

Marshall L. Rev. 105 (1994) Marshall L. Rev. 105 (1994)

Allan M. Soobert

Follow this and additional works at: https://repository.law.uic.edu/lawreview

 Part of the Computer Law Commons, and the Intellectual Property Law Commons

Recommended Citation Recommended Citation
Allan M. Soobert, Legitimizing Decompilation of Computer Software under Copyright Law: A Square Peg
in Search of a Square Hole, 28 J. Marshall L. Rev. 105 (1994)

https://repository.law.uic.edu/lawreview/vol28/iss1/3

This Article is brought to you for free and open access by UIC Law Open Access Repository. It has been accepted
for inclusion in UIC Law Review by an authorized administrator of UIC Law Open Access Repository. For more
information, please contact repository@jmls.edu.

https://repository.law.uic.edu/lawreview
https://repository.law.uic.edu/lawreview/vol28
https://repository.law.uic.edu/lawreview/vol28/iss1
https://repository.law.uic.edu/lawreview/vol28/iss1/3
https://repository.law.uic.edu/lawreview?utm_source=repository.law.uic.edu%2Flawreview%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=repository.law.uic.edu%2Flawreview%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=repository.law.uic.edu%2Flawreview%2Fvol28%2Fiss1%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@jmls.edu

LEGITIMIZING DECOMPILATION OF
COMPUTER SOFTWARE UNDER

COPYRIGHT LAW: A SQUARE PEG IN
SEARCH OF A SQUARE HOLE

ALLAN M. SOOBERT*

INTRODUCTION

Computer programs involve subject matter that has pushed
the limits of copyright law for many years. Recently, the scope of
these limits has been challenged by the process of reverse engi-
neering.1 One of the many analytical steps involved in reverse
engineering is a process called decompilation.2 Decompilation
involves copying a computer program and subsequently translat-
ing the program from a language that only a machine can under-
stand to a language that a human can read with ease. Since this
process requires the copying of a copyrighted program, decompila-
tion has created pressing issues under copyright law. Namely, the
question has arisen as to whether this increasingly significant in-
dustry practice can be accommodated under copyright law.'

This Article provides an analysis of the issues raised by re-
verse engineering and the decompilation of computer programs.
Section I presents an overview of computer programs and decomp-

* LL.M. Candidate, The George Washington University, National Law Center;
J.D., Franklin Pierce Law Center, 1993; M.S.E.E. George Mason University, 1990;
B.S.E.E., Pennsylvania State University, 1986. Mr. Soobert is an associate of the
law firm of Dorsey & Whitney in Washington, D.C., and has several years of engi-
neering experience in computer simulation and modeling of digital communication
systems. The opinions expressed herein are solely those of the author.

1. The term "reverse engineering" is defined as the technique of studying a
product to determine how it is made. See Kewanee Oil Co. v. Bicron Corp., 416
U.S. 470, 476 (1974) (stating that reverse engineering includes "starting with the
known product and working backward to divine the process which aided in its de-
velopment").

2. See generally OFFICE OF TECHNOLOGY ASSESSMENT, FINDING A BALANCE:
COMPUTER SOFTWARE, INTELLECTUAL PROPERTY, AND THE CHALLENGE OF TECHNO-
LOGICAL CHANGE 7 (1992) [hereinafter OTA REPORT].

3. Computer Assocs. Int'l, Inc. v. Altai Inc., 23 U.S.P.Q.2d (BNA) 1241, 1257
(2d Cir. 1992). Copyright law is "not ideally suited to the highly dynamic technolo-
gy of computer science. Thus far, many of the decisions in this area reflect the
courts' attempt to fit the proverbial square peg in a round hole." Id. By proposing a
statutory solution, this Article solves the problem of forcing the square peg of de-
compilation in the round hole of copyright law.

The John Marshall Law Review

ilation, and their application to current copyright law. Section II
illustrates the struggle that courts face in balancing the need to
protect computer programs on the one hand, while accommodating
reverse engineering and decompilation on the other. Section III
critiques the courts' solution to the issues at hand, pointing out
how the courts' approach has stretched an inadequate statutory
framework too far. Finally, Section IV of this Article calls for the
creation of a statutory provision which exempts decompilation
from the scope of copyright infringement under limited circum-
stances. In particular, this Article proposes that the practice of
decompilation be legitimized by placing it squarely within the
provisions of copyright law.

The proposed decompilation exception is carefully tailored to
permit decompilation without unduly diminishing the protection
for computer programs. This exception is, therefore, protective
enough to prevent piracy, and yet, permits developers and pro-
grammers to access a program's ideas and unprotected elements
in order to develop new programs. By explicitly accommodating
decompilation, the proposed exception allows the software indus-
try and consumers alike to benefit from cumulative innovation,
standardization, and the creation of compatible programs.

I. BACKGROUND

A. Overview of Computer Programs and Decompilation

1. Source Code v. Object Code

Computer programs consist of sets of instructions that direct
the operation of a computer.4 Such programs are created by writ-
ing these instructions line-by-line, which together creates "source
code." The source code is typically written in a high-level comput-
er programming language that can be read and understood by
humans.5 The source code must, in turn, be converted into ma-

4. See Steven R. Englund, Idea, Process, or Protected Expression?: Determining
the Scope of Copyright Protection of the Structure of Computer Programs, 88 MICH.
L. REV. 866, 908 (1990). See also infra note 19 for a definition of "computer pro-
gram" under copyright law. Computer programs may generally be divided into two
categories: (i) operating system programs and (ii) application programs. Operating
system programs include such programs as DOS, XENIX and OS/2. Such programs
direct the operation of a computer's hardware components in, for example, using
memory and starting and stopping application programs. See Lotus Dev. Corp. v.
Paperback Software Int'l, 15 U.S.P.Q.2d (BNA) 1577, 1579 (D. Mass. 1990). Appli-
cation programs are programs that allow a computer user to perform specific tasks,
such as engaging in word processing, database management, or spread sheet calcu-
lations or playing video games. Id.

5. See Christopher M. Mislow, Computer Microcode: Testing the Limits of Soft-
ware Copyrightability, 65 B.U. L. REV. 733, 743-44 (1985). Most high-level languag-
es, such as BASIC, COBOL, FORTRAN, Pascal and C, consist of instructions and

[Vol. 28:103

Legitimizing Software Decompiliation

chine-readable form so that it can be understood and executed by
a computer.' This conversion process is called "compilation" and
involves translating or compiling the source code into machine
language or "object code," which can be understood and executed
by a computer.7

The object code that is executed by the computer is a binary
code consisting of "ones" and "zeros" that represent, for example,
the respective "on" and "off' states of switches in a computer chip.
Different strings of ones and zeros form commands that instruct
the computer to perform certain basic operations, which may
simply involve adding or multiplying two numbers together. Even
simple instructions and commands may, however, require numer-
ous lines of object code to complete the operation. Thus, to the
human eye, the object code for a complete program can be over-
whelming and incomprehensible, with the lines of code appearing
as a continuing series of ones and zeros strung together, page
after page. Consequently, although computer programs can be
written in machine language, programmers rarely do so since the
process is so tedious and time-consuming!

commands that crudely resemble the English language, and thus, can readily be
understood by humans. Id. Other languages, such as assembly language, more
closely resemble machine-readable code. Id.; see also Gary R. Ignatin, Comment,
Let the Hackers Hack: Allowing the Reverse Engineering of Copyrighted Computer
Programs to Achieve Compatibility, 140 U. PA. L. REV. 1999, 2002 n.8 (1992).

6. A number of layers of software exist in a given computer. The application
programs typically run at the highest level of software operating within a comput-
er. The operating system programs lie beneath such application programs, coordi-
nating the operation of the application. The lowest level of software is the "micro-
code," which "takes machine language instructions and converts them to the series
of physical signals necessary to control the circuits of the computer." Ignatin, supra
note 5, at 2002. The microcode resides permanently in the computer and "consists
of a series of instructions that tell a microprocessor which of its thousands of tran-
sistors to actuate in order to perform the tasks directed by the [application pro-
grams]." Id. at n.13 (quoting NEC v. Intel, 10 U.S.P.Q.2d (BNA) 1177, 1178 (N.D.
Cal. 1989)). Thus, microcode is technically distinguishable from an operating sys-
tem or application program's machine language. For purposes of this paper, how-
ever, this distinction makes little difference. Accordingly, machine language is used
herein to refer to both types of code.

7. See Dennis S. Karjala, Copyright, Computer Software, and the New Protec-
tionism, 28 JURIMETRICS J. 33, 37 (1987). Technically, the translation process can
be accomplished by either a compiler or an interpreter program. An interpreter
program is a simultaneous translator that works in conjunction with the applica-
tion program every time the application program is run, carrying out the instruc-
tions of the program one step at a time. Paperback, 15 U.S.P.Q.2d (BNA) at 1580.
A compiler, in contrast, converts or translates the source code once and for all into
machine language, after which the translated program can be executed without the
need for any further resort to the compiler. Id.

8. Karjala, supra note 7, at 37. Instead, programmers write programs using a
high-level programming language to create source code.

1994]

The John Marshall Law Review

2. Decompilation

Decompilation is the process used in the reverse engineering
of computer programs, which retranslates or "decompiles" object
code into source code.' This process allows a developer or pro-
grammer, who is otherwise unable to read and study the pro-
gram's object code, to transform the program into more easily
understood source code. Although the process may be used for a
number of reasons, the process is typically used to make a copy of
the original code and modify this copy to create a product that
will compete commercially with the original."0

B. Overview of Copyright Law

1. Computer Programs as Copyrightable Subject Matter

Before the copyright laws were revised in 1976,11 Congress
created a National Commission on New Technological Uses of
Copyrighted Works (CONTU) to explore the interrelationship
between law and advancing technology and to propose amend-
ments to the copyright law that would better protect computer
programs. 2 After three years of researching and analyzing a
number of issues, CONTU recommended that computer programs
be protected under copyright law, with limited amendments to the
Copyright Act of 1976."3 In particular, CONTU recommended

9. OTA REPORT, supra note 2. The term "disassembly" is frequently used inter-
changeably with the term "decompilation." Decompilation is the process where a
high-level language is derived from a machine-language program. Disassembly, in
contrast, merely transforms machine language into assembly language and is con-
sidered somewhat simpler than decompilation because of the "one-to-one correspon-
dence between machine language statements and assembly language statements."
Id. Consequently, decompilation typically begins with disassembly and is followed
by a process of matching patterns of assembly language to higher level constructs
in order to create the original source code. Id. Notwithstanding this distinction, the
terms are used herein interchangeably.

10. See Arthur R. Miller, Copyright Protection for Computer Programs, Databas-
es, and Computer-Generated Works: Is Anything New Since CONTU?, 106 HARV. L.
REV. 977, 1014 (1993) (describing recreation of lost source code and "debugging" as
uses that are legitimate under the current copyright law).

11. See 17 U.S.C. §§ 101-810 (1976).
12. NATIONAL COMMISSION ON NEW TECHNOLOGICAL USES OF COPYRIGHTED

WORKS, Pub. L. No. 93-573, 88 Stat. 1873 (1974) [hereinafter CONTU]; see also H.R.
REP. No. 1476, 94th Cong., 2d Sess. 54, at 116 reprinted in 1876 U.S.C.C.A.N.
5659, 5731 [hereinafter H.R. REP. NO. 1476]; Miller, supra note 10; Peter S. Men-
ell, Tailoring Legal Protection for Computer Software, 39 STAN. L. REV. 1329 (1987)
[hereinafter Menell, Tailoring Legal Protection]; Paula Samuelson, CONTU Revisit-
ed: The Case Against Copyright Protection for Computer Programs in Machine-
Readable Form, 1984 DUKE L. J. 663 [hereinafter Samuelson, CONTU Revisited].

13. See generally CONTU FINAL REPORT ON NEW TECHNOLOGICAL USES OF COPY-
RIGHTED WORKS (1979) [hereinafter CONTu FINAL REPORT].

(Vol. 28:103

Legitimizing Software Decompiliation

inter alia that a definition of "computer program" be added to §
101 of the Copyright Act.'4 Based on CONTU's recommendations,
Congress amended the Copyright Act in 1980 to unequivocally
reconfirm that copyright protection extends to computer pro-
grams.'5 As a result, the Copyright Act clearly encompasses com-
puter programs as copyrightable subject matter.

Under the current scheme of protection, the Copyright Act
extends protection to "original works of authorship fixed in any
tangible medium of expression."" The broad categories of works
protected under the act include "literary works," 7 which are de-
fined as "works, other than audiovisual works, expressed in
words, numbers, or verbal or numerical symbols or indicia, re-
gardless of the nature of the material objects, such as books, peri-
odicals, manuscripts, phonorecords, film tapes, disks, or cards, in
which they are embodied.""8 Although computer programs are not
specifically listed in this statutory definition, it is well established
that computer programs are protected as literary works. 9 As
such, the literal elements of a computer program, whether ex-
pressed in source code or object code form, are subject to copyright
protection.0 Thus, once a program is written and, for example,
saved on a disk, the program is protected by copyright.2'

14. CONTU FINAL REPORT, supra note 13, at 11, 14-15; see also infra note 15
(discussing specific amendments) and note 19 (defining "computer program").

15. Specifically, the amendments involved the addition of a definition of
"computer program" in § 101, the deletion of the interim § 117, and the substitu-
tion of a new § 117 that now gives owners of copyrighted programs a limited right
to make limited adaptations or modifications to a program and to make archival or
back-up copies of a program. See Samuelson, Creating a New Kind of Intellectual
Property: Applying the Lessons of the Chip Law to Computer Programs, 70 MINN. L.
REV. 471, 474-75 n.12 (1985) [hereinafter Samuelson, Sui Generis Protection].

16. 17 U.S.C. § 102(a) (1990).
17. Id. In addition to literary works, the Copyright Act extends protection to a

number of other works, including: musical works; dramatic works; pantomimes and
choreographic works; pictorial, graphic and sculptural works; motion pictures and
other audiovisual works; and sound recordings. Id.

18. 17 U.S.C. § 101 (1990).
19. H.R. REP. No. 1476, supra note 11, reprinted in 1976 U.S.C.C.A.N. at 5667.

A computer program, however, is itself defined under the Copyright Act as "a set of
statements or instructions to be used directly or indirectly in a computer in order
to bring about a certain result." 17 U.S.C. § 101 (1990).

20. See Computer Assocs., 23 U.S.P.Q.2d (BNA) at 1249-51 (2d Cir. 1992); see
also Whelan Assoc., Inc. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222, 1233 (3d
Cir. 1986) (holding that copyright extends to the structure and logic of the pro-
gram, even absent copying of the program's literal elements); Apple Computer, Inc.
v. Franklin Computer Corp., 714 F.2d 1240, 1249 (3d Cir. 1983) (holding source
code and object code copyrightable).

21. A number of exclusive rights are extended to an author of a work protected
by copyright. In particular, the author has the exclusive right to reproduce and dis-
tribute copies of the copyrighted work, to prepare derivative works based upon the
copyrighted work, and, in most cases, to display and perform the work publicly.

1994]

The John Marshall Law Review

2. Idea v. Expression

Computer programs, like all other works of authorship, are
not necessarily entitled to an unlimited scope of copyright protec-
tion. Indeed, it is a fundamental principle of copyright law that a
copyright in a work does not protect the ideas embodied in that
work and, instead, protects only the expression of such ideas.22

This principle has been codified in § 102(b) of the Copyright Act,
which provides: "[in no case does copyright for an original work of
authorship extend to any idea, procedure, process, system, method
of operation, concept, principle, or discovery, regardless of the
form in which it is described, explained, illustrated, or embodied
in such a work."23 Others may, therefore, copy and use the ideas
in a copyrighted work, provided the author's expression is not
likewise appropriated.24

Finding the line that separates idea and expression is, how-
ever, not a simple task.25 This task is even more difficult where
the copyrighted work is a computer program. In fact, due to their
essentially utilitarian nature, computer programs, when compared
to more traditional aesthetic works, "hover even more closely to
the elusive boundary line described in §102 (b)."2 To help define
this line, Judge Learned Hand proposed an abstraction test to
separate ideas from expression in written or dramatic works that
is often applied to computer programs:

See 17 U.S.C. § 106 (1990) (listing the exclusive rights in copyrighted works). Such
rights exist as soon as the work is fixed in a tangible medium of expression and
generally extend thereafter for fifty years after the death of the author. See 17
U.S.C. 302(a) (1990) (specifying the duration of copyright protection).

22. This principle is known as the idea-expression dichotomy. See Mazer v.
Stein, 347 U.S. 201, 217 (1954); Baker v. Selden, 101 U.S. 99 (1880). Congress has
made clear that this dichotomy applies with equal force to computer programs:
"Islection 102(b) is intended.., to make clear that the expression adopted by the
programmer is the copyrightable element in computer program, and that the ac-
tual processes or methods embodied in the program are not within the scope of
copyright law." See H.R. REP. No. 1476, supra note 11, reprinted in 1976 U.S.C.-
C.A.N. at 5670.

23. 17 U.S.C. § 102(b) (1990).
24. Where, however, an idea can be expressed in only a limited number of ways,

the expression is said to have "merged" with the idea. In such instances, the ex-
pression is not subject to copyright protection, and thus, may be readily copied. See
Baker v. Selden, 101 U.S. 99, 104 (1880) (holding that copyright protection does
not extend to those aspects of a work that "must necessarily be used as incident to"
the idea, system or process described in the work).

25. As Judge Learned Hand stated, "Nobody has ever been able to fix that bou-
ndary, and nobody ever can." Nichols v. Universal Pictures Co., 45 F.2d. 119, 121
(2d Cir. 1930), cert. denied, 282 U.S. 902 (1931); see also Computer Assocs., 23
U.S.P.Q.2d (BNA) at 1250 (quoting Judge Learned Hand's remarks in Nichols and
noting that "his convictions have remained firm").

26. Computer Assocs., 23 U.S.P.Q.2d (BNA) at 1251.

[Vol. 28:103

Legitimizing Software Decompiliation

Upon any work... a great number of patterns of increasing gener-
ality will fit equally well, as more and more of the incident is left
out.... [Tihere is a point in this series of abstractions where they
are no longer protected, since otherwise the playwright could pre-
vent the use of his "ideas," to which, apart from their expressions,
his property is never extended.27

Application of Judge Hand's abstraction test allows unpro-
tectable ideas to be differentiated from protectable expression, and
recognizes that a computer program may contain many distinct
ideas.' Thus, by separating the program into manageable com-
ponents, the abstraction test enables the boundaries of protectable

expression to be discerned.29

Upon separating the computer program into manageable
components, the unprotectable components of the program must
be filtered from the protectable expression.' This step requires
that the unprotectable ideas be "filtered" from: (i) expression nec-
essarily incident to the idea, (ii) expression already in the public
domain, (iii) expression dictated by external factors,3 and (iv)
expression not original to the programmer or author.2 Using
such an analysis, unprotected ideas and protectable expression
can be separated from one another.33

27. Nichols, 45 F.2d at 121, cert. denied, 282 U.S. 902 (1931). The Second Cir-
cuit Court of Appeals has recently applied this test to computer programs. See
Computer Assocs., 23 U.S.P.Q.2d (BNA) at 1251.

28. See Atari Games Corp. v. Nintendo of Am. Inc., 24 U.S.P.Q.2d (BNA) 1015,
1020 (Fed. Cir. 1992) (citing Computer Assocs., 23 U.S.P.Q.2d (BNA) at 1253).

29. 24 U.S.P.Q.2d (BNA) at 1020.
30. Id.
31. Such external factors include the computer's hardware specifications, com-

patibility with other programs, and demands of the computer program's industry.
Id. (citing Plains Cotton Coop. Ass'n v. Goodpasture Computer Servs., 807 F.2d
1256 (5th Cir.), cert. denied, 484 U.S. 821 (1987); Harper & Row v. Nation Enters.,
471 U.S. 539, 548 (1985); Computer Assocs., 23 U.S.P.Q.2d (BNA) at 1253).

32. Id.
33. Although this approach may seem somewhat complex, simpler approaches

have been criticized as overbroad and inaccurate. See, e.g., Englund, supra note 4,
at 881. For instance, in Whelan Assocs. v. Jaslow Dental Lab., Inc., 797 F.2d 1222
(3d Cir. 1986), cert. denied, 479 U.S. 1031 (1987), the Court of Appeals for the
Third Circuit proposed an approach that attempts to draw the line between idea
and expression by defining the idea and expression by purpose. Such an approach,
however, has been criticized as "descriptively inadequate" and as based on a "some-
what outdated appreciation of computer science," which fails to recognize that a
program typically has many distinct ideas. Computer Assocs., 23 U.S.P.Q.2d (BNA)
at 1252; see also, Englund, supra note 4, at 881; Peter S. Menell, An Analysis of the
Scope of Copyright Protection for Application Programs, 41 STAN. L. REV. 1045,
1052 (1989).

1994]

The John Marshall Law Review

3. Fair Use

An author's exclusive ownership rights in a copyrighted work
are qualified, in part, by the fair use provision in § 107 of the
Copyright Act.34 Section 107 establishes a defense to an other-
wise valid claim of copyright infringement, listing four factors
that must be considered in determining whether a particular use
of a copyrighted work is fair.35 In particular, § 107 lists the fol-
lowing factors that must be weighed in any fair use analysis:

(1) the purpose and character of the use, including whether such
use is of a commercial nature or is for nonprofit educational purpos-
es;
(2) the nature of the copyrighted work;
(3) the amount and substantially of the portion used in relation to
the copyrighted work as a whole; and
(4) the effect of the use upon the potential market for or value of
the copyrighted work.3"

The first statutory factor requires weighing the purpose and char-
acter of the use, focusing on whether such use is for a commercial
or noncommercial purpose. The Supreme Court held that "every
commercial use of copyrighted material is presumptively an unfair
exploitation ... of the copyright,"37 and thus, "weighs against a
finding of fair use."" Consequently, where a computer program is
copied in order to make a competing commercial product, the use
of the program may not be considered fair.39

The second statutory factor requires consideration of the
nature of the copyrighted work. Such consideration has tradition-

34. See 17 U.S.C § 107 (1990).
35. The preamble of the fair use provision indicates the types of purposes for

which reproduction of a copyrighted work may be considered fair, including such
purposes as "criticism, comment, news reporting, teaching (including multiple
copies for classroom use), scholarship, or research." Id.

36. Id.; see also WILLIAM F. PATRY, THE FAIR USE OF PRIVILEGE IN COPYRIGHT
LAW (1985) (discussing the fair use provision and its underlying statutory factors).

37. Sony Corp. of Am. v. Universal Studios, 464 U.S. 417, 451 (1984). The dis-
tinction between commercial and noncommercial use is "not whether the sole mo-
tive of the use is monetary gain but whether the user stands to profit from exploi-
tation of the copyrighted material without paying the customary price." Harper &
Row, 471 U.S. at 562.

38. See Harper & Row, 471 U.S. at 562. Although a commercial purpose raises
a presumption of unfairness, such a presumption may, in some cases, be rebutted
by the characteristics of a particular commercial use. See also Hustler Magazine,
Inc. v. Moral Majority, Inc., 230 U.S.P.Q. (BNA) 646, 651-52 (9th Cir. 1986) (quot-
ing MCA, Inc. v. Wilson, 677 F.2d 180, 182 (2d Cir. 1980)) (holding that where the
challenged use serves the public interest, the presumption of unfairness may be
rebutted).

39. But see Sega Enters. Ltd. v. Accolade, Inc., 24 U.S.P.Q.2d (BNA) 1561 (9th
Cir. 1992).

[Vol. 28:103

Legitimizing Software Decompiliation

ally involved, for example, determining whether the copyrighted
work has been published.40 Unpublished works are afforded pro-
tection greater than those works which have been published; and,
consequently, the scope of fair use is "narrower with respect to
[such] unpublished works."" Thus, because computer programs
in object code form may arguably be considered unpublished, such
programs are likely subject to a narrower application of fair
use.

42

The third statutory factor requires examination of the
amount and substantiality of the portion used in relation to the
copyrighted work as a whole. Where the use involves copying the
"heart" of a work, such use weighs against a finding of fair use.43

Thus, in cases where the entire work is copied, the third statutory
factor tends to weigh against a finding a fair use." Therefore,
when a computer program is copied, for example, during
decompilation, a finding of fair use may not be warranted under
traditional analysis.45

The fourth statutory factor is typically considered the most
important of the four statutory factors, although it bears a close
relationship to the first factor's inquiry into the purpose and char-
acter of the use.46 The fourth factor requires consideration of the
effect of the use on: (i) the potential market for the copyrighted
work or (ii) the value of the copyrighted work. Because of this
factor's importance, a use that supplants a copyrighted work may
prove dispositive in a fair use analysis. 47 This fourth statutory
factor, therefore, requires inquiry into whether the use, "should
[it] become widespread, . . . would adversely affect the potential
market for the copyrighted work."48 Such adverse effects include
diminishing potential sales, interfering with marketability, and
usurping the market. 49 Thus, as under the first factor, copying in
order to make a competing commercial product tends to weigh
against a fair use finding.'

40. See Harper, 471 U.S. at 555-60.
41. Id. This greater protection arises from "the author's right to control the first

public appearance of his expression." Id. at 564.
42. See Ignatin, supra note 5, at 2040 n.150 (arguing that software is unpub-

lished even after it has been disseminated to the public).
43. See Harper, 471 U.S. at 564-66.
44. Id; cf Sony, 464 U.S. at 447-55 (holding that home video recording for time-

shifting purposes is fair use, notwithstanding that the entire copyrighted work is
recorded or copied).

45. See Ignatin, supra note 5, at 2040 (arguing that reverse engineering fails all
four fair use factors, including the third factor since the entire work is copied).

46. See Harper, 471 U.S. at 567.
47. Id.
48. Sony, 464 U.S. at 451.
49. Hustler, 230 U.S.P.Q. (BNA) at 654.
50. But see Sega, 24 U.S.P.Q.2d (BNA) at 1561.

19941

The John Marshall Law Review

4. § 117

As part of its recommendations to Congress, CONTU recom-
mended the enactment of § 117 of the Copyright Act to ensure
that owners of computer programs could use and place copies of
their programs into their computer's memory without being sub-
jected to potential liability for copyright infringement.51 In gener-
al, § 117 provides a narrow exception for copying a computer pro-
gram when such copying is essential to the legitimate use of the
original program.52 Due to its limited scope, § 117 typically does
not protect someone who, for example, makes copies of a program
for reverse engineering purposes.53

C. The Problem of Applying Copyright Law to Decompilation:
Trying to Force a Square Peg Into a Round Hole

The current provisions of the Copyright Act do not explicitly
accommodate the practice of decompilation. The courts have,
therefore, struggled to find a way to justify the practice. In so
doing, they attempt to stretch an inadequate statutory framework

51. See CONTU FINAL REPORT, supra note 13, at 16-18. Congress enacted section
117 essentially in the form proposed by CONTU. The enacted section extended the
limited rights granted under section 117 to "owners" of copies of computer pro-
grams, rather than to "rightful possessors" of such copies, as proposed. See Richard
H. Stern, Section 117 of the Copyright Act: Charter of the Software Users' or an
Illusory Promise?, 7 W. NEW ENG. L. REV. 459, 460 (1985) (citing CONTU FINAL
REPORT, supra note 12, at 12-13).

52. As enacted, section 117 provides:
Notwithstanding the provisions of section 106 [which lists the exclusive
rights of a copyright owner], it is not an infringement for the owner of a copy
of a computer program to make or authorize the making of another copy or
adaptation of that computer program provided:

(1) that such a new copy or adaptation is created as an essential step
in the utilization of the computer program in conjunction with a ma-
chine and that it is used in no other manner, or
(2) that such new copy or adaptation is for archival purposes only and
that all archival copies are destroyed in the event that continued
possession of the computer program should cease to be rightful.

17 U.S.C. § 117 (1990).
53. See Sega, 24 U.S.P.Q.2d (BNA) at 1568; see also Miller, supra note 10, at

1016 n.185 (citing Allen-Myland, Inc. v. Int'l Business Machs. Corp., 746 F. Supp.
520, 535-36 (E.D. Pa. 1990) (finding the use of a "library" of copied microcode not
to be an "essential step," and "adaptation," or "archival"); Micro-Sparc, Inc. v. Am-
type Corp., 592 F. Supp. 33, 35 (D. Mass. 1984) (finding that the "essential step"
provision in section 117 is limited to the rightful possessor, not to a third party);
Atari v. JS&A Group, Inc., 597 F. Supp. 5, 9-10 (N.D. Ill. 1983) (finding that the
'archival" provision in section 117 does not apply to programs that cannot be dam-
aged or erased)); cf. Vault Corp. v. Quaid Software Ltd., 7 U.S.P.Q.2d (BNA) 1281
(5th Cir. 1988) (holding that section 117 preempted a Louisiana statute that autho-
rized license agreements to prohibit decompilation of computer programs).

[Vol. 28:103

Legitimizing Software Decompiliation

too far. Consequently, a different solution is needed. The following
sections analyze the courts' struggle in handling this problem,
illustrate the flaws in their approach and, accordingly, call for a
different solution that accommodates decompilation by statute.

II. THE EMERGING STRUGGLE: WEIGHING THE NEED FOR
DECOMPILATION AGAINST THE NEED TO PROTECT

COMPUTER SOFTWARE

A. One Side of the Scale: The Need for Decompilation

1. Access to Ideas

Since copyright law protects an author's expression of ideas
rather than the ideas themselves, others are generally free to
extract and use the ideas from a given work, provided that the
expression of those ideas is likewise not copied.54 For example, a
person interested in writing a legal novel may study the works of
Scott Turow and John Grisham to extract the novelists' ideas in
creating a new legal thriller. Likewise, someone interested in
creating a movie about international espionage can look to books
written by Tom Clancy for suggestions.55 Through study and ana-
lysis, therefore, anyone is free to extract and use the ideas that
are expressed in these works simply by reading the works.

For computer programs, however, such study and analysis
cannot, without more, be accomplished. Computer programs are
typically sold and disseminated to the public in object code form.
Thus, unlike most traditional literary works, such computer pro-
grams cannot be read and understood by humans without labori-
ous effort." Instead, object code must be decompiled in order to
be retranslated into a form understandable by humans.57 Decomp-
ilation is, therefore, vital to identifying the ideas and functional
elements embodied in a computer program.

2. Compatibility

Closely related to the need to access the ideas in a computer
program is the need to create compatible programs. In general, a
compatible program is a computer program that is capable of
working with another program. Compatibility is an important
part of the software industry since many programs are specifically
developed to interoperate with other programs."5 For example,

54. See 17 U.S.C. § 102(b) (1990); see also Ignatin, supra note 5, at 2009-14.
55. Ignatin, supra note 5, at 2009-14.
56. See supra notes 4-8 and accompanying text (distinguishing source and object

code).
57. See supra notes 9-10 and accompanying text (explaining decompilation).
58. See Ignatin, supra note 5, at 2025. For purposes of this Article,

1994]

The John Marshall Law Review

assume a software developer seeks to write an application pro-
gram that creates charts and plots. Such a program may prove
particularly useful in plotting the results produced from other
application programs, such as a program that performs spread-
sheet calculations. Although the plotting program could run inde-
pendently of the spreadsheet program, the two programs would be
more useful if each could operate with the other."9 Assuming
interoperability is achieved, the output of the spreadsheet pro-
gram could be used directly with the plotting program to produce
graphical representations of the spreadsheet program's output.

One method of achieving such program compatibility would
be to decompile the spreadsheet program to learn, for instance,
the program's input and output requirements, its data formatting
techniques., and the types of variables used in the program. Such
information could then be incorporated into the plotting program,
as it is created, so that the two programs would interoperate with
one another. Under these circumstances, programmers would
benefit from more choices of programs in which compatibility
could be achieved. Software developers would likewise have more
programs that would interoperate with one another, which would
likely increase user demand for software with increased interoper-
ational capabilities. In addition, program users would be present-
ed with more programs to choose from and lower prices from the
increased competition among software developers."

As compatibility increases, the benefits of standardization
and "network externalities" will also increase."' For instance,
input and output formats will become standardized as more com-
patible programs are developed, allowing users to more freely
transfer data between programs." Likewise, users will benefit by

interoperability is synonymous with compatibility.
59. Ignatin, supra note 5, at 2025.
60. Id.
61. Network externalities are the benefits that accrue to computer users from

the creation of large computer networks that make use of compatible and stan-
dardized application programs. See David Victor, An Analysis of an Affirmative
Defense for Reverse Engineering Within A System of Legal Protection for Computer
Software, 66 S. CAL. L. REV. 1705, 1726 (1993) (explaining that Sun Microsystems
maintains liberal licensing policies, which encourage software developers to write
programs for Sun Microsystems' networks).

62. See Joseph Farrell, Standardization and Intellectual Property, Last Frontier
Conference on Copyright Protection of Computer Software, 30 JURIMETRICS J. 35,
36-39 (1989). Note, however, that standardization is not necessarily always socially
or economically beneficial. For example, as the public becomes more accustomed to
a specific standard, the more difficult it becomes to change to other more beneficial
standards. The "QWERTY" keyboard layout is a classic example of such a case:
although other layouts are available, adoption of another alternative is virtually
impossible since the general public is not likely to be persuaded to change stan-
dards. See Miller, supra note 10, at 1030.

[Vol. 28:103

Legitimizing Software Decompiliation

having access to a larger network as well as increased access to
other software. 3 Such benefits, however, cannot be achieved with-
out decompilation. Programmers and developers must be able to
study and use, for example, common program interface require-
ments in order to reap these benefits. As a result, decompilation is
an important tool for achieving compatibility, and thus, for bene-
fitting from standardization and network externalities.

3. Encouraging Cumulative Innovation

In most areas of technology, new advancements are achieved
by building on developments previously made and incorporated in
existing technology." That is, by making use of existing technolo-
gy, new products and technologies may be developed by simply
improving on those already in existence, without the need to "re-
invent the wheel."5 Such improvements in existing technology
result in a process of sequential development that increases con-
sumer satisfaction and accelerates the introduction of new prod-
ucts into an existing industry."6 This process also allows produc-
ers and developers to make use of the "incremental value" that an
initial innovation contributes to subsequent derivative pro-
ducts.67 Making use of initial innovation and such incremental
value is commonly referred to as "cumulative innovation."68

Such cumulative innovation is critical in the development of
computer programs. Indeed, most members of the computer indus-
try believe that the development of computer programs has

63. See Farrell, supra note 61, at 36-39. Such a benefit will also likely increase
the standardization of human interface designs. These designs are often based on
human factors engineering, which assesses the aesthetic, psychological, graphical
and ergonometric factors with the greatest appeal to humans. This appeal is con-
sidered as the key driving force in the overall success of an audio-visual interface.
See Victor, supra note 61, at 1727 n.l15 (quoting Menell, An Analysis, supra note
33, at 1053-54 n.37).

64. See Victor, supra note 61, at 1722; see also Robert P. Merges & Richard R.
Nelson, On the Complex Economics of Patent Scope, 90 COLUM. L. REV. 839, 880-81
(1990) (discussing such advancements in a broad range of industries, including
aircraft, automobile, computer, electric lighting, and semiconductor industries).

65. See, e.g., Ignatin, supra note 5, at 2030.
66. See Victor, supra note 61, at 1723.
67. Id.; see also Merges & Nelson, supra note 64, at 880-81. The incremental

value in initial innovation can economically be attributed to: (i) the entire value of
the derivative product in cases where the product could not have been developed
without the initial innovation; (ii) the cost savings realized in cases where the
initial innovation has reduced the cost of developing the derivative product; or (iii)
the value of the derivative product's accelerated release into the marketplace. See
Victor, supra note 61, at 1723.

68. See Victor, supra note 61, at 1722. Cumulative innovation is distinguished
from "discrete innovation," which refers generally to advancements in technology
that are independent of previous innovations. Id.

19941

The John Marshall Law Review

thrived on cumulative innovation in the past and should continue
to do so."9 In particular, these members maintain that the cur-
rent software industry has resulted from an "evolutionary devel-
opment" that has spurred "considerable amount[s] of software
innovation."7" However, in order for the software industry to
keep pace with rapid changes in innovation, software developers
must be able to build upon those developments already included
in existing computer programs. Decompilation is the key step in
this building process. As a result, software developers must be
able to decompile existing computer programs in order to learn
from existing technology and to continue promoting the progress
of science and the useful arts.71

B. The Other Side of the Scale: The Importance of Protecting
Computer Programs

1. Preventing Piracy

The arguments in favor of maintaining strong copyright pro-
tection of computer programs are generally based on a single
theme: preventing piracy.72 Any system of copyright protection
for computer programs, that would, for example, permit limited
instances of copying in order to access unprotected ideas, runs the
risk of leaving programs with inadequate protection. Because this
risk increases the likelihood of piracy, the system of protection
must be carefully tailored to serve important goals such as main-
taining the incentive to independently produce an innovative or
creative expression of one's own.

Piracy is a real problem with computer programs since com-
puter programs, by their nature, are easily duplicated. A pirate
who seeks to duplicate a program can do so, in most cases, in
minutes, if not seconds. The duplication may involve nothing more
than copying the program from one disk to another. Thus, the
pirate can "create" a copy of a program without incurring any of
the development costs that were involved in creating the original
program.7" The pirate, therefore, can market a competing version
of the original program almost immediately, by simply purchasing

69. Id. (citing Paula Samuelson and Robert J. Glushko, Survey on the Look and
Feel of Lawsuits, 33 COMM. ASS'N COMPUTING MACHINERY 483, 483-85 (1990)).

70. Victor, supra note 61, at 1722.
71. Congress is mandated to fulfill this goal. See U.S. CONST. art. I, § 8, cl. 8

("Congress shall have the Power ... [t]o promote the Progress of Science and use-
ful Arts, by securing for limited Times to Authors and Inventors the exclusive
Right to their respective Writings and Discoveries. .. ").

72. See e.g., Karjala, supra note 7, at 40; Miller, supra note 10, at 1026-29;
Ignatin, supra note 5, at 2034-39.

73. Remarkably, such copying can be accomplished without even knowing any-
thing about the program's code. See Karjala, supra note 7, at 40.

(Vol. 28:103

Legitimizing Software Decompiliation

a single copy of the original program and generating duplicates.
Having foregone the development costs involved in independent
creation, the pirate can likewise charge a much lower price for its
product.74 In the end, the original creator's lead time in market
entry is reduced to almost nothing. Consequently, since piracy is
the source of such harmful effects, copyright protection of comput-
er programs must involve means to prevent piracy.

2. Encouraging Initial Innovation

A corollary to maintaining a system of copyright protection
that prevents piracy is the need for a system that provides incen-
tives for initial innovation. Initial innovation can be encouraged
by crafting a system of copyright protection that does not tolerate
piracy.7" This system of protection should condone innovation
and, at the same time, condemn slavish copying. Such a system
should seek to promote new developments in technology by accom-
modating developers' desires to maintain enough lead time to
recoup their development costs." Any system of copyright protec-
tion for computer programs should strive to meet these goals,
regardless of whether the system also provides limited exemptions
for archival, fair use, and decompilation.

For example, the computer industry benefits from cumulative
innovation, because most programs and computer-related products
build on previous developments in technology.77 Many members
of the computer industry believe that the industry thrives on
cumulative innovation and, consequently, is harmed by an ex-
panded scope of protection that prevents the creation of derivative
computer programs.7" The harm that results generally involves a
slowed pace of computer program development. In turn, this de-
crease in development could create "performance gaps" between
the hardware and software industries, with hardware products
developing more rapidly than their software counterparts.79

Under the current system of protection, computer programs
are entitled to a broad scope of copyright protection, and thus,
others are, in most cases, restricted from decompiling a computer
program to develop a derivative program." Such protection gen-

74. See id.
75. See, e.g., Karjala, supra note 7, at 40; Victor, supra note 61, at 1734-35.
76. See Karjala, supra note 7, at 58; see also Ignatin, supra note 5, at 2035.
77. See Merges and Nelson, supra note 64, at 880-81.
78. See Victor, supra note 61, at 1725.
79. Id. at 1724-25.
80. The right to prepare derivative works under copyright law is an exclusive

right of the person who creates the original computer program. See 17 U.S.C. §
106(2) (1990); cf NEC Corp. v. Intel Corp., 10 U.S.P.Q. (BNA) 1177 (N.D. Cal.
1989) (holding that NEC's final derivative program, which was created by

19941

The John Marshall Law Review

erally prevents others from copying the initial innovations of one
program and using these innovations to create another program.
Although two recent cases indicate that the Ninth Circuit is will-
ing to permit limited decompilation of a program to study and use
its ideas to achieve program compatibility, these cases do not
permit, for example, the use of portions of a decompiled program
to create an improved derivative program."' Consequently, the
current copyright law, as it stands now, strongly encourages ini-
tial innovation and retards cumulative innovation by overprotect-
ing computer programs. A more appropriate system of copyright
protection for computer programs should strive to maintain the
incentives for both initial innovation and cumulative innovation.

C. The Need to Strike a Balance: The Benefits of Decompilation
Must be Balanced with Maintaining the Protection of

Computer Programs

The system of copyright protection for computer programs
must be carefully tailored so that it does not overly protect com-
puter programs. The system should be protective enough to pre-
vent piracy and, at the same time, permit developers and pro-
grammers to access ideas and other unprotected elements of a
program. The system should likewise allow the software industry
to benefit from standardization and the creation of compatible
programs. Moreover, the system should not be overly protective of
computer program so as to produce harmful effects, such as re-
tarding cumulative innovation.

IV. THE COURTS' SEARCH FOR A SOLUTION: STRETCHING AN
ADEQUATE STATUTORY FRAMEWORK Too FAR?

A. The Courts' Initial Reactions to Decompilation and Other
Means of Copying

1. An Initial Reluctancy

In a number of cases initially addressing issues of infringe-
ment of copyrighted computer programs, courts were repeatedly
reluctant to accept the practice of studying and analyzing one
computer program in order to develop another. For example, in
Midway Manufacturing Co. v. Strohon,"2 the defendant, Slayton,

decompiling Intel's microcode, was not an infringement, even though the legality of
the decompiled code was not decided); see also infra notes 107, 115 and accompany-
ing text (explaining that NEC's initial decompilation of Intel's microcode may have
been authorized under a license).

81. See infra notes 119-47, 148-54 and accompanying text (analyzing the Atari
and Sega decisions and their reliance on fair use).

82. 564 F. Supp. 741 (N.D. Ill. 1983). Although video games are treated under

[Vol. 28:103

Legitimizing Software Decompiliation

created a modified version of plaintiffs copyrighted PAC-MAN
video game by inter alia increasing the game's playing speed so
that the game would present a greater challenge to skilled
players." In addition to increasing the speed of play, the defen-
dant also modified the appearance of the game's screen display by
changing the shapes of the game's characters.' The appearance
of the modified game was sufficiently different from that of PAC-
MAN so that there was no copyright infringement of the audiovi-
sual aspects of the game. 5 The computer program itself, howev-
er, in Slayton's modified game was substantially similar to the
original PAC-MAN program.8 This similarity resulted from the
fact that Slayton had produced the modified code by simply
"patching" lines of new code to the original code and subsequently
encoding the combined code into memory chips. 7 Consequently,
the district court, relying on traditional copyright principles, held
that the modified code constituted copyright infringement even
though Slayton had, in effect, improved the game."

Similarly, in Hubco Data Products Corp. v. Management
Assistance, Inc.,89 a district court rejected the legality of reverse
engineering of computer programs under copyright law. In Hubco,
the copyright owner (MAI) held a copyright on an operating sys-
tem, which was being marketed to its customers at different pric-
es and with different capabilities. The difference in price was
justified by placing "governors" on less expensive versions of the
operating system, which restricted memory capacity and the use
of certain peripheral devices.9 The alleged infringer (Hubco) of-
fered MAI's customers a service in which the governors would be
removed from the less expensive versions, thus enhancing the
program's capabilities.92 Initially, Hubco accomplished the con-
version by reverse engineering the operating system through: (1)

copyright law as audiovisual works, rather than literary works, the case is both in-
structive and analogous to issues raised by similar uses of computer programs. See
Karjala, supra note 7, at 49 n.54, 60.

83. See Midway, 564 F. Supp. at 744.
84. Id.
85. See id. at 748-49 (emphasis added); see also Stern. Section 117. supra note

51, at 474.
86. The court determined that eighty-nine percent of the original program was

copied into the defendant's modified program. See Midway, 564 F. Supp. at 752.
87. Id.; see also Stern, Section 117, supra note 51, at 474 n.96 (explaining that

"(a] 'patch' is a slight modification of a program, done without modifying or recom-
piling the rest of the program") (citation omitted).

88. See Karjala, supra note 7, at 61 (suggesting that, by creating a more chal-
lenging game for skilled players, the defendant supplied a social benefit).

89. 219 U.S.P.Q. (BNA) 450 (D. Idaho 1983).
90. Id.
91. Id.
92. Id.

1994]

The John Marshall Law Review

making a printout of the operating system program; (2) "decoding"
the program into code that could be more easily understood by
humans; (3) performing a line-by-line comparison to locate the
governors by inspection; and (4) modifying or deleting the gover-
nors that were found." Later, Hubco supplied the customers with
a computer program that essentially performed the same steps,
with the copying and comparison of MAI's code occurring entirely
within the computer.94 The court held that both methods consti-
tuted copyright infringement, as both methods produced unautho-
rized copies of MAI's ungoverned code for comparison purposes."

In SAS Institute, Inc. v. S&H Computer Systems, Inc.,' an-
other district court similarly refused to accept reverse engineering
as a legitimate practice. In SAS Institute, the defendant (S&H)
converted plaintiffs (SAS) copyrighted statistical analysis pro-
gram into another computer language so that the program could
run on an incompatible computer.97 Although S&H had obtained
a license from SAS to only use the SAS program on an IBM com-
puter, S&H translated the program's IBM compatible code into
source code and then "retranslated" this source code into a VAX-
compatible coding scheme.9 Subsequently, printouts of the pro-
gram in the VAX-coding scheme were output for study and analy-
sis by S&H employees.99 Thereafter, the S&H employees pro-
duced their own version of the code, which was held to be sub-
stantially similar to the original SAS program.' The court held
that a number of copyright violations had occurred, including
violations of SAS's exclusive right to make copies (e.g., the print-
outs) and to prepare derivative works (e.g., the S&H version of
the code).1"'

The Midco, Hubco, and SAS cases illustrate the courts' initial
reactions to decompilation. In particular, these cases show the
courts' initial reluctance to embrace the practice.

93. Id. at 452.
94. Hubco, 219 U.S.P.Q. (BNA) at 452.
95. Id. at 456. The first method involved making a physical printout of MAI's

program on paper, while the second method involved the computer reproduction of
MAI's ungoverned lirogram, which was compared against the governed system. Id.

96. 225 U.S.P.Q. (BNA) 916 (M. D. Tenn. 1985).
97. Id. at 919. Although S&H had obtained a license from SAS to only use the

SAS program on an IBM computer, S&H translated the program's IBM compatible
code into source code and then coded and re-translated this source code into a
VAX-compatible coding scheme. Subsequently, printouts of the program in the
VAX-coding scheme were output for study and analysis by S&H employees. There-
after, the S&H employees produced their "own" S&H version of the code, which
was substantially similar to the SAS program. Id. at 919-20.

98. Id.
99. Id.

100. Id. at 926-27.
101. SAS Inst., 225 U.S.P.Q. (BNA) at 926-27.

[Vol. 28:103

Legitimizing Software Decompiliation

2. A Trend Towards Encouraging the Practice

Although many courts were initially reluctant to accept de-
compilation of copyrighted computer programs as a legitimate
practice, several other cases illustrate a trend towards encourag-
ing the practice. For example, in E.F. Johnson v. Uniden,"2 the
district court determined that the defendant (Uniden) had in-
fringed plaintiffs (EFJ's) computer program, which EFJ had de-
veloped for use in a mobile logic trunked radio (LTR) system."3

Although Uniden had reverse engineered the LTR code in an at-
tempt to create its own version of code compatible with the radios
in EFJ's LTR system, the court found compelling evidence of sub-
stantial similarity between defendant Uniden's code and EFJ's
LTR code.'O In holding the defendant Uniden liable for infringe-
ment, the court nevertheless condoned the practice of decompila-
tion by noting that:

[tihe mere fact that defendant's engineers dumped, flow charted,
and analyzed plaintiffs code does not, in and of itself, establish
pirating. As both parties' witnesses admitted, dumping and analyz-
ing code is a standard practice in the industry. Had Uniden con-
tented itself with surveying the general outline of the EJF program,
thereafter converting the scheme into detailed code through its own
imagination, creativity, and independent thought, a claim of in-
fringement would not have arisen."5

By recognizing the importance of reverse engineering, the
E.F. Johnson decision reflects an important leap towards legiti-
mizing decompilation of copyrighted computer programs. This
trend continued in NEC v. Intel.l"' In NEC, Hiroaki Kaneko, a
software engineer at NEC, reverse engineered the microcode used

102. 228 U.S.P.Q. (BNA) 891 (D. Minn. 1985).
103. Id. at 893.
104. Id. at 896. The court cited a number of facts as evidence of substantial simi-

larity: (i) the Uniden code made use of the same sampling rate as used by EFJ,
even though the Uniden code was to operate with a newer and faster micropro-
cessor that was capable of using faster sampling rates; (ii) the Uniden code used an
error sample technique that was identical to the one used in EFJ code, even
though this technique was efficient for the EFJ's code but inefficient when used in
the Uniden code; (iii) the Uniden code contained an "H-matrix" for error detection,
which was an exact duplicate of the one use by EFJ, even though thirty-one other
matrices were available.; (iv) the Uniden code contained an inverse H-matrix iden-
tical to the inverse H-matrix found in the EFJ code; (v) both codes contained iden-
tical superfluous instructions of duplex operation, even though duplex transmis-
sions were determined to be infeasible after the EFJ code was written, but before
the Uniden code was "written;" and (vi) both codes contained an identical error in
the codes' "select call prohibit" feature, which was intended to cause a busy signal
in certain situations. Id. at 896-99.

105. Id. at 903 n.17.
106. 10 U.S.P.Q.2d (BNA) 1177 (N.D. Cal. 1989).

19941

The John Marshall Law Review

in Intel's 8086/88 microprocessors in order to develop a version of
the microcode for NEC's V20 and V30 microprocessors, which
were comparable to Intel's 8086/88 microprocessors." 7 In so do-
ing, Kaneko decompiled Intel's microcode and studied the
decompiled code in hopes of creating a new version of the micro-
code.1"8 Based on the preliminary version of the decompiled code
(Rev.O), Kaneko subsequently created another version of the mic-
rocode (Rev.2), which was the final version used in NEC's V20 and
V30 microprocessors." 9

Intel claimed that the Rev. 2 microcode infringed its copy-
right in the 8086/88 microcode based on several similarities be-
tween the two programs and other indications of copying."0 For
instance, both programs made use of similar "patches" written to
overcome a "bug" in their respective microprocessors.' as well
as a number of other nearly identical microsequences."' In addi-
tion, Kaneko failed to take advantage of the superior features of
the NEC V-series microprocessor hardware and, instead, created a
program similar in operation to Intel's microcode."' Notwith-
standing such similarities, the court determined that the Rev. 2
code did not infringe Intel's copyright in its 8086/88 microcode,
concluding that Rev. 2, "when considered as a whole, is not sub-
stantially similar to the Intel microcode within the meaning of the
copyright law.""4 In reaching this conclusion, the court ex-
plained that Kaneko had substantially changed the decompiled
code (Rev. 0) to create the final version (Rev. 2), and thus, "an
ordinary observer, considering Rev. 2 as a whole, would not rec-
ognize it as having been taken from the copyrighted source.""'

107. Id. at 1188. The reproduction of any hardware components of the 8086/88
microprocessors was permitted under license. Id. The right to duplicate the micro-
code, however, was not granted under the license. Id.

108. Id. at 1185.
109. Id.
110. See NEC, 10 U.S.P.Q.2d (BNA) at 1184-89 (discussing the arguments put

forth by Intel in support of its contention that Kaneko created Rev. 2 by copying
substantial portions of the 8086/88 Microcode).

111. Id. at 1185. In adapting its microcode for use with the 8088 microprocessor,
Intel was required to write a patch to overcome a bug in the 8088's interrupt se-
quence. Id.; see also supra note 87 (defining "patch"). Such a patch was not requir-
ed for the microcode when used with the 8086 microprocessor. NEC, 10 U.S.P.Q.2d
(BNA) at 1185. Likewise, Kaneko wrote a similar patch in creating the interrupt
sequence for the V20 microprocessor, although the patch was not required for the
V30 microprocessor. Id.

112. See id. at 1186-87. Both programs used specific sequences that handled
errors and "RESET" functions in the same ways. Id.

113. See id. at 1187-88. Kaneko made minimal usage of a superior "dual bus"
capability used for data transfer and could have made more efficient use of avail-
able memory. NEC, 10 U.S.P.Q.2d (BNA) at 1187-88.

114. Id. at 1183. The court did not rule on the legality of the decompiled code it-
self. Id. at 1186.

115. NEC, 10 U.S.P.Q.2d (BNA) at 1184. The court made clear that "a defendant

[Vol. 28:103

Legitimizing Software Decompiliation

Any remaining similarities, the court reasoned, were due to hard-
ware constraints, which dictated that certain instruction sequenc-
es and program operations be accomplished in identical or sub-
stantially similar fashion."" In support of its reasoning, the
court made repeated references to an independent version of com-
parable microcode that had been created in a "clean room," which
contained many of the same similarities.17 As a result, the court
held that NEC's Rev. 2 did not infringe Intel's 8086/88
microcode." 8

The E.F. Johnson and NEC decisions illustrate the courts'
trend towards encouraging reverse engineering and decompilation
of copyrighted computer programs. In particular, the approaches
adopted in these cases indirectly condone decompilation and inter-
mediate copying of computer programs, provided the final product

may legitimately avoid infringement by intentionally making sufficient changes in
a work which would otherwise be regarded as substantially similar to that of the
plaintiff." Id. at 1187 (citations omitted). Thus, the court found it of no consequence
that Kaneko may have referred to the decomplied code as he developed the final
version, stating, for example:

[let us assume... that when Mr. Kaneko faced the task of writing [specific]
microsequences for Rev. 0 he sought to recall how Intel had handled this
difficult problem, or even referred to this character string to make that de-
termination. Let us assume also.., that he directly copied what he had
learned into Rev. 0. If he had stopped there... a difficult question would
arise as to whether what he had taken from the disassembled 8086/88 con-
stituted the technical "idea" for a solution or the "expression" thereof (citing
17 U.S.C. sec. 102(b); Whelan, 797 F.2d at 1234). However Mr. Kaneko
changed the subject microsequences substantially in writing Rev. 2 [and] ...
there remains no basis for a claim of copying or even of substantial similari-
ty.

Id. at 1186-87.
116. Id. at 1186-87. Because NEC was permitted to study and duplicate Intel's

hardware designs, the court was inclined to permit usage of the accompanying
microcode. Id.

117. Id. at 1188-89. A "clean room" refers to a method of creating software, in-
tended to be comparable to an existing program, where the creation occurs without
access to the existing program. See Contreras et al., NEC v. Intel: Breaking New
Ground in the Law of Copyright, 3 HARv. J.L. & TECH. 209, 213 n.23 (1990). The
existing program is analyzed to extract its ideas and functions from which specifi-
cations may be created. These specifications are then given to programmers in the
so-called "clean room," who have not had access to the existing program. The pro-
grammers subsequently develop a comparable version of the program based on the
specifications. Consequently, similarities between the existing program and the
"clean room" program help show that such similarities were dictated by hardware
constraints, functional concerns and the like. See Miller, supra note 10, at 1025.

In NEC, once the threat of litigation ensued, an independent software devel-
oper was hired by NEC to develop a clean room version of the Intel microcode.
NEC, 10 U.S.P.Q.2d (BNA) at 1185. This clean room code was substantially similar
to certain aspects of both the NEC and Intel microcodes and, as a result, was per-
suasive evidence of noninfringement. Id. at 1184-85.

118. Id. at 1190

19941

The John Marshall Law Review

is not substantially similar to the decompiled code."'

B. The Ninth Circuit's Solution: Decompilation as Fair Use

1. The Atari Case

In Atari Games Corp. v. Nintendo of America, Inc.,12 the
Court of Appeals for the Federal Circuit, applying Ninth Circuit
law, sought to justify the practice of decompilation and intermedi-
ate copying of computer programs as a fair use. In so doing, the
Federal Circuit stated that "reverse engineering object code to
discern the unprotectable ideas in a computer program is a fair
use," provided the use involves "an authorized copy of [the pro-
gram] .

In Atari, the defendant Atari had created video game car-
tridges for the Nintendo Entertainment System (NES), which
plaintiff 'Nintendo claimed infringed the copyright in Nintendo's
"10NES" program. 122 Atari reverse engineered Nintendo's chips
by chemically removing layers from the chips and, through micro-
scopic examination, transcribing the 10NES object code into a
handwritten list of ones and zeros. 23 Subsequently, these ones
and zeros were fed into a decompiler to produce source code.2 4

Atari, however, could not decipher the code, and thus, resorted to
other tactics.12

1 In particular, Atari's counsel obtained an unau-
thorized copy of the source code from the U.S. Copyright Office by
falsely alleging that the copy was needed for on-going litiga-
tion. 2'

Based on these facts, the Federal Circuit analyzed Atari's
"reverse engineering" activities under the fair use doctrine. The
Federal Circuit's analysis, however, was simplified by the fact

119. Both the E.F. Johnson and NEC cases do not directly provide a justification
for the legality of the decompiled code under copyright law, indicating that the
courts are willing to "tolerate infringement by the initial decompiled [code]." Con-
treras, supra note 117, at 217-18. One case proposed to justify the practice under §
117(1), where the "copy was 'created as an essential step in the utilization' of [the]
program." Vault Corp. v. Quaid Software Ltd., 7 U.S.P.Q.2d (BNA) 1281 (5th Cir.
1988)(quoting 17 U.S.C. § 117(1) (1988)). The use of § 117, however, to justify
decompilation has repeatedly been criticized. See, e.g., Miller, supra note 10, at
1025; see also Sega Enter. Ltd. v. Accolade Inc., 24 U.S.P.Q.2d (BNA) 1561, 1568.
120. 24 U.S.P.Q.2d (BNA) 1015 (9th Cir. 1992)
121. Id. at 1023-24. The appeal was heard in the Federal Circuit because a claim

for patent infringement was raised in the district court proceeding. Id. at 1017.
122. Id. at 1017-18. The 10NES program is the security system software de-

signed by Nintendo to prevent the NES from accepting unauthorized cartridges. Id.
at 1017.

123. Atari, 24 U.S.P.Q.2d (BNA) at 1017.
124. Id.
125. Id.
126. Id. at 1018

[Vol. 28:103

Legitimizing Software Decompiliation

that Atari possessed a purloined copy of Nintendo's code.'27 In-
deed, "[blecause Atari was not in authorized possession of the
Copyright Office copy of 10NES, any copying or derivative copying
of 10NES source code from the Copyright Office does not qualify
as a fair use."'28 Nevertheless, the Federal Circuit went on to
state that, under Ninth Circuit law, "[rieverse engineering, un-
tainted by the purloined copy of the 10NES program and neces-
sary to understand 10NES, is a fair use."'29

2. The Sega Case

In Sega Enterprises, Ltd. v. Accolade, Inc., the Ninth Cir-
cuit addressed the legality of reverse engineering, and thus, the
Federal Circuit's reasoning in Atari. The Ninth Circuit recognized
the importance of decompilation in the software industry and, like
the Federal Circuit in Atari, justified the practice as a fair
use. 13

1

In Sega, the plaintiff accused the defendant Accolade of inter
alia copyright infringement after Accolade had developed video
game cartridges compatible with Sega's "Genesis" game console, a
device upon which computer video games are played.' In order
to develop games compatible with the Genesis console, the defen-
dant Accolade performed a two-step process. In the first step of
the process, Accolade reverse engineered Sega's video game pro-
grams by obtaining commercially available copies of Sega's game
cartridges and decompiling the object code stored in the read-only
memory (ROM) chips in Sega's games. 3 Accolade engineers
studied and analyzed printouts of the decompiled code and loaded
the code into a computer for further experimentation.'34 Through
this analysis and experimentation, Accolade learned the interface
requirements of Sega's code required for compatibility. 5 Based
on this knowledge, Accolade created a development manual that

127. Id.
128. Atari, 24 U.S.P.Q.2d (BNA) at 1024.
129. Id.
130. 24 U.S.P.Q.2d (BNA) 1561 (9th Cir. 1992).
131. Id. at 1562.
132. Id. at 1563. Sega develops and markets video entertainment systems, which

include the Genesis console and video game cartridges. Id. The defendant Accolade
is an independent developer, manufacturer and marketer of computer entertain-
ment software, including video games that are compatible with various computer
systems such as Sega's Genesis console. Id. In addition to the copyright infringe-
ment claim, claims were raised for trademark infringement and false designation
of origin under sections 32(1) and 43(a) of the Lanham Act, 15 U.S.C. §§ 1114(a)-(1)
and 1125(a). Sega, 24 U.S.P.Q.2d (BNA) at 1564.

133. Sega, 24 U.S.P.Q.2d (BNA) at 1564.
134. Id.
135. Id.

1994]

The John Marshall Law Review

documented these requirements, although the manual did not
include any of Sega's code.'36 In the second step of the process,
Accolade developed its own games for the Genesis console, relying
on the manual for the interface specifications and without exam-
ining other aspects of Sega's code.137

The Ninth Circuit held that Accolade's reverse engineering
process constituted a fair use.13 In reaching this decision,"'
the Ninth Circuit's fair use analysis systematically considered the
four statutory fair use factors. With respect to the first factor, 40

the Ninth Circuit determined that Accolade's direct purpose for
copying Sega's code, and thus, Accolade's direct use of the copy-
righted material, was to study the interface requirements of
Sega's code for achieving compatibility with the Genesis
console.14 ' Therefore, even though Accolade's ultimate purpose
was the release of Genesis-compatible games for sale, this "com-
mercial aspect of its use can best be described as of minimal
significance." Consequently, the Ninth Circuit determined that
the first factor weighed in favor of fair use.

The Ninth Circuit determined that the fourth factor, 43

which is closely related to the first factor, also favored Accolade
and a fair use determination. In analyzing the likelihood of ad-
verse effects on the market or potential market, the Ninth Circuit
determined that many consumers were likely to purchase both
games, and that Sega's attempt to monopolize the market was not

136. Id.
137. Id. Subsequently, Accolade learned that Sega was releasing a new version of

the Genesis console (Genesis III) that included a trademark security system
(TMSS), which required the use of the letters "S-E-G-A" in order to initialize the
program. Id. at 1564. Accolade reverse engineered a "small segment" of the pro-
gram in order to learn the initialization code for the program. Id. In addition to the
reverse engineering issue, this use raised issues of trademark infringement and
false designation of origin under sections 32(1) and 43(a) of the Lanham Act, 15
U.S.C. §§ 1114(a)(1) and 1125(a). Id.

138. Sega, 24 U.S.P.Q.2d (BNA) at 1574.
139. The Ninth Circuit reversed the district court's holding that Accolade's re-

verse engineering practice was not a fair use. The district court determined that
Accolade had performed the reverse engineering steps for the commercial purpose
of marketing a competing product, which is presumptively unfair, and that Sega
failed to rebut this presumption. Id. at 1569. The Ninth Circuit, however, agreed
with the district court's other conclusions that such reverse engineering was not
permitted under § 102(b) or § 117. Id. at 1567-68.

140. The first factor requires inquiry into "the purpose and character of the use,
including whether such use is of a commercial nature or is for nonprofit education-
al purposes." 17 U.S.C. § 107(1) (1990).

141. Sega, U.S.P.Q.2d (BNA) at 1570.
142. Id.
143. The fourth factor requires consideration of "the effect of the use upon the

potential market for or value of the copyrighted work." 17 U.S.C. § 107(4) (1990).

[Vol. 28:103

Legitimizing Software Decompiliation

an equitable basis for precluding fair use."" Consequently, the
Ninth Circuit found that the fourth factor weighed in favor of fair
use, even though Sega may suffer a "minor economic loss.""4 As

a result, the Ninth Circuit minimized the importance of the com-
mercial aspects and effects of Accolade's process in finding that
the first and fourth factors weighed in favor of fair use.

Subsequently, the Ninth Circuit completed its fair use analy-
sis by evaluating the other two factors. With respect to the second
factor,146 the Ninth Circuit found that, because computer pro-
grams are disseminated in object code form, the nature of the
work favored fair use in order to access the unprotected ideas
embodied in the program.'47 Finally, the Ninth Circuit deter-
mined that the third factor weighed against fair use since the
entire work was copied; however, the Ninth Circuit accorded this
factor little weight since the ultimate use was limited. 4 ' Upon
weighing these factors, the Ninth Circuit concluded that "where
disassembly [or decompilation] is the only way to gain access to
the ideas and functional elements embodied in a copyrighted com-
puter program, and where there is a legitimate reason for seeking
such access, disassembly or decompilation is a fair use of the copy-
righted work as a matter of law."'49

C. The Need for a Better Solution?

1. The Problems With Fair Use

The Atari and Sega cases indicate that courts are willing to
permit decompilation of computer software under limited circum-
stances. These cases, however, stretch the fair use doctrine to its
extreme, and perhaps beyond.' ° In particular, the courts' fair
use analysis in these cases is unpersuasive and illustrates the
difficulty in permitting decompilation under current copyright
law. For example, the Atari court's analysis of the fair use factors
was simplified by the fact that Atari had illegally obtained a copy
of the source code at issue. This fact allowed the Federal Circuit
to dispose of Atari's fair use defense with relative ease since Atari
was in possession of an unauthorized copy of the source code.'

144. Sega, 24 U.S.P.Q.2d (BNA) at 1571.
145. Id.
146. The second factor involves evaluating "the nature of the copyrighted work."

17 U.S.C. § 107(2) (1990).
147. Sega, 24 U.S.P.Q.2d (BNA) at 1571. The Ninth Circuit made clear, however,

that such access only favors fair use if there are no other means to gain access to
the ideas, such as by viewing the screen display. Id. at 1572 n.7.

148. Id. at 1573.
149. Id. at 1574.
150. See supra notes 117-46 and accompanying text.
151. See Atari, 24 U.S.P.Q.2d (BNA) at 1024.

1994]

The John Marshall Law Review

Thus, the Atari case's analysis of fair use and its relation to de-
compilation can be considered "pure dictum."'52

The Sega court's analysis of the fair use factors is more com-
prehensive than the analysis in Atari, although similarly unper-
suasive. Although the Sega court systematically considered each
of the four statutory factors, the Sega court's analysis improperly
minimizes the obvious commercial nature and purpose of the
copying, and thus stretches the fair use doctrine too far.1"3 Such
a distortion of the fair use doctrine is not in harmony with the
intent of Congress. For example, in enacting legislation to protect
semiconductor chip design, Congress determined that the fair use
provisions under copyright law were inappropriate to accommo-
date reverse engineering."4 Consequently, Congress chose to
permit reverse engineering through a "specific provision closely
tailored to the needs of the semiconductor industry, rather than
through an extension of the fair use doctrine."6 5 Congress did
this specifically in order to avoid creating a general reverse engi-

152. See Miller, supra note 10, at 1015 n.181. Specifically, Miller suggests that,
because Atari was in possession of an unauthorized copy of the source code, "much
of the opinion's discussion of the fair use doctrine is pure dictum." Id.
153. The Sega court seemed determined to justify the limited decompilation of

copyrighted computer software, using the fair use doctrine as the vehicle to reach
such a result. In analyzing the first statutory factor, the Sega court recognized that
"the fact that copying is for a commercial purpose weighs against a finding of fair
use.... However, the presumption of unfairness that arises in such cases can be
rebutted by the characteristics of a particular commercial use." Sega, 24 U.S.P.Q.
(BNA) at 1569 (citations omitted). The court went on to nevertheless conclude that
"although Accolade's ultimate purpose was the release of Genesis-compatible
games for sale, the direct purpose in copying Sega's code, and thus its direct use of
the copyrighted material, was simply to study the functional requirements for
Genesis compatibility so that it could modify existing games and make them us-
able with the Genesis console." Id. at 1570. Thus, the court held that "any commer-
cial 'exploitation' was indirect or derivative ... [indicating that the copying] was
for a legitimate, essentially non-exploitative purpose, and that the commercial
aspect of [Accolade's] use can best be described as of minimal significance." Id. This
analysis is difficult to accord with the Supreme Court's view in Sony that such
commercial use creates a strong presumption of unfairness.

Similarly, in analyzing the fourth statutory factor, the Sega court concluded
that the market impact of the use weighed in favor of a finding of fair use. The
court reasoned that any harm to Sega would be limited since consumers are likely
to buy multiple game cartridges. Id. at 1571. This analysis has been criticized
based on an inappropriate definition of the relevant market. See Miller, supra note
10, at 1020 (criticizing the market defined in terms of Sega's game cartridges and
suggesting a different result had the market been defined in terms of home enter-
tainment systems, where Sega and Accolade are fierce competitors).

154. See Stern, Determining Liability for Infringement of Mask Work Rights Un-
der the Semiconductor Cip Protection Act, 70 MINN. L. REV. 217, 329 (1985); Leo J.
Raskind, Reverse Engineering, Unfair Competition, and Fair Use, 70 MINN. L. REV.
385, 393 (1985); Miller, supra note 10, at 1024; see also infra notes 162-78 (discuss-
ing the protection of such semiconductor chip designs).

155. See Miller, supra note 10, at 1024.

[Vol. 28:103

Legitimizing Software Decompiliation

neering privilege under the fair use doctrine. 5 ' Thus, "[g]iven
this Congressional intent, the Sega court's judicial creation of
even a circumscribed reverse engineering privilege under the fair
use doctrine seems singularly inappropriate."'5 7 Therefore, de-
compilation of copyrighted computer programs should be justified
on grounds other than fair use.

2. The Limitations of § 102(b)

Section 102(b) of the Copyright Act is relevant to decompila-
tion, but is insufficient to justify decompilation. Section 102(b)
codifies the fundamental principle of copyright law that a copy-
right in a work does not extend protection to the ideas embodied
in the work, but instead protects only the expression of such
ideas. '5 Therefore, others may copy and use the ideas in a copy-
righted work, provided the author's expression is not likewise
appropriated. Although this principle provides some justification
for access to ideas embodied in a work, it does not justify the
copying of both protected and unprotected elements of the
work. "'59 As a result, § 102(b) provides insufficient grounds for
justifying the decompilation of computer programs.

3. The Limitations of § 117

Like § 102(b), § 117 of the Copyright Act is an insufficient
basis for permitting decompilation."' Section 117 allows owners
of computer programs to use their programs and place copies of
their programs into their computer's memory without being sub-
jected to potential liability for copyright infringement.' In gen-
eral, § 117 is a narrow exception for copying a computer program
when such copying is essential to the legitimate use of the origi-
nal program. Due to its limited scope, the weight of authority on
the subject indicates that § 117 does not protect someone who
decompiles or otherwise makes copies of a program for reverse
engineering purposes.'62

156. Id.
157. Id.
158. See supra notes 22-33 and accompanying text (describing the

idea/expression dichotomy codified in 17 U.S.C. § 102(b)).
159. See Miller, supra note 10, at 1016 (citing Atari for implicitly rejecting this

justification for decompilation).
160. See supra note 52 (reciting 17 U.S.C. § 117 (1990)).
161. Id.
162. See supra note 51 (discussing narrow scope of section 117).

19941

The John Marshall Law Review

4. Summary: The Inadequacy of the Present Statutory Framework

The present statutory framework of the Copyright Act is
inadequate to accommodate the practice of reverse engineering
and decompilation of copyrighted computer programs. Although
the fair use doctrine has recently been stretched to cover this
practice, the doctrine is inappropriate to support such a practice.
Likewise, the idea/expression dichotomy in § 102(b) is insufficient
to recognize a decompilation privilege. Similarly, § 117's narrow
exceptions for archival, adaptions, and the like do not provide
adequate grounds for permitting decompilation. Consequently, the
present statutory framework, properly construed, does not permit
decompilation and, therefore, requires revision to address this
situation. 3 As a result, the present statutory framework must
be modified in order to properly accommodate reverse engineering
and decompilation."

V. A PROPOSED SOLUTION: LEGITIMIZING
DECOMPILATION BY STATUTE

A. The Semiconductor Chip Protection Act (SCPA) as a Guide

1. Computer Programs: The Analog of a Semiconductor Chip?

A semiconductor chip is a fingernail-sized wafer of silicon,
which may contain more than a million electronic elements.'

163. Other considerations compel the conclusion that the present statutory fra-
mework should be modified to accommodate decompilation, rather than stretching
the current provisions to permit the practice. For instance, CONTU specifically
considered those circumstances where someone in lawful possession of a program
might legally modify or copy that program. See Miller, supra note 10, at 1023.
CONTU subsequently recommended that section 117 be enacted to permit copying
the program for archival or, where essential to the program's use, copying or adap-
ting the program. Id. This suggests that Congress did not wish to extend the copy-
right provisions which were current at that time to accommodate the peculiarities
of computer programs.

164. The European Community (EC) software directive includes an Article that
explicitly permits decompilation to achieve interoperability. See Amended Proposal
for a Council Directive on the Legal Protection of Computer Programs, 33 J.O.
COMM. EUR. (No. C 320) 22, 25 (1990). Under Article 6(1)(c) of the directive, the
right of decompilation is limited to instances where the decompilation is "indis-
pensable to obtain the information necessary to achieve the interoperability of an
independently created computer program with other programs." Id. Article 6(2)(c)
further states that the decompiled code may not be "used for the development,
production or marketing of a computer program substantially similar in its expres-
sion, or for any other act which infringes copyright." Id.

165. See John A. Kidwell, Software and Semiconductors: Why are We Confused?,
70 MINN. L. REV. 533, 541 (1985). Technically, these electrical elements are config-
ured in three dimensions. See Brooktree Corp. v. Advanced Micro Devices Inc., 24
U.S.P.Q.2d (BNA) 1401, 1404 (Fed. Cir. 1992). The elements are built in layers

[Vol. 28:103

Legitimizing Software Decompiliation

The layout of the chip requires careful selection and configuration
of these elements and their connections in order to achieve the
chip's desired functions.' The chip design and layout are, in
most cases, driven by the function that the chip, or some portion
thereof, is sought to perform.167 Thus, although the chip is typ-
ically thought of as hardware, or something in between hardware
and software, the chip has many similarities to a computer pro-
gram." For example, the chip has an architecture or logic that
is analogous to instructions that direct the operation of the ele-
ments embodied on the chip.169 These instructions are, therefore,
similar to the lines of code in a computer program, which likewise
direct the operation of the computer.

Moreover, both chips and programs are created in similar
ways. Chips are usually created by diagramming the general
layout of the chip design, testing the design through computer
simulation and then reducing the design to circuit form during
the chip fabrication process. 7 ' Similarly, computer programs are
created by writing a flowchart that gives an overall impression of
the structure of the program, coding the program itself to create
the program's source code, compiling the program and running
and testing the program on the computer.' 7 '

Due to these and other similarities, it can be argued that
chips and programs should not be treated differently.12 Both
types of technology have utilitarian aspects about them, which
makes the application of copyright principles troublesome.'
Since CONTU has recommended that computer programs be pro-
tected by copyright, exceptions to the copyright law are the proper
means in which to balance issues raised by the utilitarian aspects
of computer programs.' Because of the inadequacies of the pre-

using a series of "masks" which are produced using photographic depositing and
etching techniques. Id. In this way, layers of metallic, insulating and semiconduc-
tor material are deposited in the desired patter on each wafer of silicon. Id.; see
also 17 U.S.C. § 901(a) (defining "mask work" and "semiconductor chip product").

166. See Kidwell, supra note 165, at 541.
167. Id. at 543.
168. Notwithstanding these similarities, semiconductor chips are protected by

their own distinct legislation, which is based, in part, on copyright principles as
well as other principles tailored solely to the uniqueness of the semiconductor
ships. See 17 U.S.C. §§ 901-914 (1990); see also Brooktree, 24 U.S.P.Q.2d (BNA) at
1404.
169. See Kidwell, supra note 165, at 541.
170. Id. at 543.
171. Id.
172. See, e.g., Samuelson, CONTU Revisited, supra note 11, at 727-49; see gener-

ally Kidwell, supra note 165; Samuelson, Sui Generis Protection, supra note 15.
173. See Samuelson, Sui Generis Protection, supra note 15, at 473. Utilitarian

works are not subject to copyright protection. See 17 U.S.C. § 101 (1990) (defining
"useful article").

174. See supra notes 13-15 and accompanying text for a discussion of CONTU

1994]

The John Marshall Law Review

sent statutory framework, 7 ' reverse engineering and
decompilation of computer programs should be addressed by such
means.

2. Reverse Engineering Under SCPA

The inherent similarities between semiconductor chips and
computer programs suggest that the two types of technology
should be protected, in part, by an analogous statutory ap-
proach. 7' Although the protection scheme developed for semi-
conductor chips (entitled the Semiconductor Chip Protection Act
or SCPA) includes a number of similarities to the copyright princi-
ples that protect computer programs, this chip protection scheme
includes several significant differences from traditional copyright
law. "'77 Of these differences, the specific statutory exception for
reverse engineering is most notable.

Under the SCPA, reverse engineering is a statutory defense
that allows a chip producer to engage in reverse engineering and,
in the process, be excused from infringement, provided the end
product is itself original. 7 ' In performing such reverse engineer-
ing, the producer may disassemble, study and analyze an existing
chip in an effort to learn its flow and organization.'79 Subse-

recommendations.
175. See supra notes 150-62 and accompanying text for a discussion of problems

with fair use and the inadequacies of the present statutory framework.
176. See generally Samuelson, Sui Generis Protection, supra note 15.
177. See 17 U.S.C. §§ 901-914 (1990); see also Brooktree, 24 U.S.P.Q.2d at (BNA)

1404-5. In general, the Semiconductor Chip Protection Act, 17 U.S.C. §§ 901-914
(1990), grants "certain exclusive rights to owners of registered mask works, includ-
ing the exclusive right 'to reproduce the mask work by optical, electronic, or any
other means,' and the exclusive right 'to import or distribute a semiconductor chip
product in which the mask work is embodied.'" Brooktree, 24 U.S.P.Q.2d (BNA) at
1405 (quoting 17 U.S.C. § 905). "Mask works that are not 'original,' or that consist
of 'designs that are staple, common-place, or familiar in the semiconductor indus-
try, or variation of such designs, combined in a way that, considered as a whole, is
not original,' are excluded from protection." Id. (quoting 17 U.S.C. § 902(b)). Like
copyright law, chip protection also does not extend to "any idea, procedure, process,
system, method of operation, concept, principle, or discovery, regardless of the form
in which it is embodied." 17 U.S.C. § 902(c).

178. See Brooktree, 24 U.S.P.Q.2d (BNA) at 1407. In particular, the SCPA pro-
vides that it is not infringement of a registered mask work for:

(1) a person to reproduce the mask work solely for the purpose of teaching,
analyzing, or evaluating the concepts or techniques embodied in the mask
work or the circuitry, logic flow, or organization of the components used in
the mask work; or
(2) a person who performs the analysis or evaluation described in paragraph
(1) to incorporate the results of such conduct in an original mask work which
is made to be distributed.

17 U.S.C. § 906(a).
179. See Brooktree, 24 U.S.P.Q.2d (BNA) at 1407.

[Vol. 28:103

Legitimizing Software Decompiliation

quently, the developer may use any knowledge gained during this
study and analysis to create an original chip.' In developing
the new chip, the developer can create a new design that imple-
ments the same or equivalent functions as the existing chip, so
long as a different design layout is used to achieve this implemen-
tation.' Such chip development will almost always result in a
"paper trail" of documentation that can be used to distinguish
between a substantial copy and the product of legitimate reverse
engineering.8 2 Because of the similarities between chips and
programs, the SCPA's reverse engineering exception can be adapt-
ed for use with computer programs.

B. Shaping A Limited Decompilation Exception

1. The New Statutory Framework

This Article proposes a limited decompilation exception that
permits the decompilation of copyrighted computer programs by
statute. This exception codifies the approach taken in NEC v.
Intel... and permits a developer to decompile a copyrighted com-
puter program for study and analysis in order to gain access to
the program's ideas and other unprotected elements. The excep-
tion is not available when such ideas and elements can be gleaned
from other sources such as program manuals, flow charts, inter-
face specifications or screen displays. The developer may subse-
quently incorporate the program's ideas, the unprotected ele-
ments, as well as elements necessary for compatibility, into a
"new" version of the program, provided that the final product is
not, when considered as a whole, substantially similar to the
decompiled code. By permitting the use of these ideas and ele-

180. Id.
181. Id. The legislative history to the SCPA elaborates on the requirements for a

derivative design not to be an infringement:
The end product of the reverse engineering process is not an infringement,
and itself qualifies for protection under the Act, if it is an original mask
work as contrasted with a substantial copy. If the resulting semiconductor
product is not substantially identical to the original, and its design involved
significant toil and investment, so that it is not mere plagiarism, it does not
infringe the original chip, even if the layout of the two chips is, in substan-
tial part, similar.

Id. at 1408 (citing Explanatory Memorandum - Mathias.Leahy Amendment to S.
1201, 130 CONG. REC. S12, 916 (daily ed. Oct. 3, 1984)).

182. The paper trail may include circuit diagrams, preliminary design layouts,
computer simulations and the like. Such evidence is thought to distinguish illegiti-
mate and legitimate behavior: the paper trail is "expeted to document efforts in
'analyzing or evaluating the concepts or techniques embodied in the mask work or
the circuitry, logic flow or organizations of components used in the mask work,' as
the effort required would be reflected in the documents." Id.

183. See supra notes 108-18 and accompanying text.

19941

The John Marshall Law Review

ments, the exception presupposes a commercial motive and pur-
pose. Such a decompilation exception might read:'

§117A. LIMITATIONS ON EXCLUSIVE RIGHTS: REVERSE
ENGINEERING OF COMPUTER PROGRAMS

Notwithstanding the provisions of § 106, it is not an infringement
of the exclusive rights of the owner of a copyrighted computer
program for:

(1) A person, in rightful possession of an authorized copy of the
program, to decompile, disassemble, or otherwise translate the pro-
gram from machine-readable form to an assembly or higher-level
programming language for the purpose of studying, analyzing, or
evaluating the ideas, concepts, techniques or unprotected expression
embodied in the program; or
(2) A person, who performs the study, analysis or evaluation de-
scribed in paragraph (1), to incorporate the results of such reverse
engineering in a final product made for distribution, provided that
the final product is, when considered as a whole, not substantially
similar to the copyrighted computer program and cannot be recog-
nized to have been taken from a copyrighted source.

2. Application of the Limited Decompilation Exception

The limited decompilation exception would, as an affirmative
defense, place the burden of proof on the accused infringer. The
defendant would, therefore, be required to persuade the fact find-
er that the new version of the decompiled code fits within the
limited decompilation exception in order to rebut the plaintiffs
prima facie case of infringement.18 Any similarities in subrou-
tines or other sequences, for example, could be attributed to spe-
cific compatibility and hardware constraints. Clean room evidence
would be admissible to corroborate any theory of noninfringement,
although such evidence is not required.18 Likewise, "paper trail"
evidence can be used to distinguish a substantial copy from a
legitimate reverse engineered product. Expert testimony may also
prove useful in drawing such a distinction.

184. Cf. supra note 178 (reciting the reverse engineering provision under the
SCPA).

185. This approach has been suggested under the SCPA as well. See Stern, De-
termining Liability, supra note 155, at 338.

186. Certainly, the "new" version of decompiled code would not need to be creat-
ed in a clean room since such a requirement would retard cumulative innovation.
See supra notes 64-71 and accompanying text for a discussion of cumulative inno-
vation. See also supra note 114 (discussing NEC and condoning access to the de-
compiled code during development of a new version of decompiled code).

[Vol. 28:103

1994] Legitimizing Software Decompiliation 137

3. The Benefits of a Statutory Solution Outweigh the Costs

The new limited decompilation exception is carefully tailored
so that it permits decompilation without unduly diminishing the
protection of computer programs. The exception permits develop-
ers and programmers to access ideas and, at the same time, is
protective enough to prevent piracy. The proposed exception, by
explicitly accommodating decompilation, allows the software in-
dustry and consumers alike to benefit from cumulative innovation,
standardization, and the creation of compatible programs.

CONCLUSION

This Article has analyzed reverse engineering and the de-
compilation of computer programs under current copyright law.
The analysis has illustrated the struggle that courts have faced in
balancing the need to protect computer programs, on the one
hand, against the need to accommodate reverse engineering and
decompilation, on the other. The analysis has critiqued the courts'
solution to date, which seeks to stretch an inadequate statutory
framework too far. Consequently, the analysis calls for the cre-
ation of a new statutory section that exempts decompilation from
the scope of copyright infringement under limited circumstances.
In particular, a new limited decompilation exception has been
proposed that legitimizes the practice of decompilation by placing
it squarely within the provisions of the copyright law.

The proposed decompilation exception is carefully tailored to
permit decompilation without unduly diminishing the protection
for computer programs. This exception is, therefore, protective
enough to prevent piracy and, at the same time, permits develop-
ers and programmers to access a program's ideas and unprotected
elements. By explicitly accommodating decompilation, the excep-
tion allows the software industry and consumers alike to benefit
from cumulative innovation, standardization, and the creation of
compatible programs. Courts can apply the exception to the prac-
tice of decompilation with relative ease and, more importantly,
without the need to force a square peg in a round hole.

	Legitimizing Decompilation of Computer Software under Copyright Law: A Square Peg in Search of a Square Hole, 28 J. Marshall L. Rev. 105 (1994)
	Recommended Citation

	Legitimizing Decompilation of Computer Software under Copyright Law: A Square Peg in Search of a Square Hole

